Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemg Structured version   Visualization version   Unicode version

Theorem hgt750lemg 30732
Description: Lemma for the statement 7.50 of [Helfgott] p. 69. Applying a permutation  T to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
hgt750lemg.f  |-  F  =  ( c  e.  R  |->  ( c  o.  T
) )
hgt750lemg.t  |-  ( ph  ->  T : ( 0..^ 3 ) -1-1-onto-> ( 0..^ 3 ) )
hgt750lemg.n  |-  ( ph  ->  N : ( 0..^ 3 ) --> NN )
hgt750lemg.l  |-  ( ph  ->  L : NN --> RR )
hgt750lemg.1  |-  ( ph  ->  N  e.  R )
Assertion
Ref Expression
hgt750lemg  |-  ( ph  ->  ( ( L `  ( ( F `  N ) `  0
) )  x.  (
( L `  (
( F `  N
) `  1 )
)  x.  ( L `
 ( ( F `
 N ) ` 
2 ) ) ) )  =  ( ( L `  ( N `
 0 ) )  x.  ( ( L `
 ( N ` 
1 ) )  x.  ( L `  ( N `  2 )
) ) ) )
Distinct variable groups:    N, c    R, c    T, c    ph, c
Allowed substitution hints:    F( c)    L( c)

Proof of Theorem hgt750lemg
Dummy variables  b 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( a  =  ( T `  b )  ->  ( N `  a )  =  ( N `  ( T `  b ) ) )
21fveq2d 6195 . . . . 5  |-  ( a  =  ( T `  b )  ->  ( L `  ( N `  a ) )  =  ( L `  ( N `  ( T `  b ) ) ) )
3 tpfi 8236 . . . . . 6  |-  { 0 ,  1 ,  2 }  e.  Fin
43a1i 11 . . . . 5  |-  ( ph  ->  { 0 ,  1 ,  2 }  e.  Fin )
5 hgt750lemg.t . . . . . 6  |-  ( ph  ->  T : ( 0..^ 3 ) -1-1-onto-> ( 0..^ 3 ) )
6 fzo0to3tp 12554 . . . . . . 7  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }
7 f1oeq23 6130 . . . . . . 7  |-  ( ( ( 0..^ 3 )  =  { 0 ,  1 ,  2 }  /\  ( 0..^ 3 )  =  { 0 ,  1 ,  2 } )  ->  ( T : ( 0..^ 3 ) -1-1-onto-> ( 0..^ 3 )  <-> 
T : { 0 ,  1 ,  2 } -1-1-onto-> { 0 ,  1 ,  2 } ) )
86, 6, 7mp2an 708 . . . . . 6  |-  ( T : ( 0..^ 3 ) -1-1-onto-> ( 0..^ 3 )  <-> 
T : { 0 ,  1 ,  2 } -1-1-onto-> { 0 ,  1 ,  2 } )
95, 8sylib 208 . . . . 5  |-  ( ph  ->  T : { 0 ,  1 ,  2 } -1-1-onto-> { 0 ,  1 ,  2 } )
10 eqidd 2623 . . . . 5  |-  ( (
ph  /\  b  e.  { 0 ,  1 ,  2 } )  -> 
( T `  b
)  =  ( T `
 b ) )
11 hgt750lemg.l . . . . . . . 8  |-  ( ph  ->  L : NN --> RR )
1211adantr 481 . . . . . . 7  |-  ( (
ph  /\  a  e.  { 0 ,  1 ,  2 } )  ->  L : NN --> RR )
13 hgt750lemg.n . . . . . . . . 9  |-  ( ph  ->  N : ( 0..^ 3 ) --> NN )
1413adantr 481 . . . . . . . 8  |-  ( (
ph  /\  a  e.  { 0 ,  1 ,  2 } )  ->  N : ( 0..^ 3 ) --> NN )
15 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  { 0 ,  1 ,  2 } )  -> 
a  e.  { 0 ,  1 ,  2 } )
1615, 6syl6eleqr 2712 . . . . . . . 8  |-  ( (
ph  /\  a  e.  { 0 ,  1 ,  2 } )  -> 
a  e.  ( 0..^ 3 ) )
1714, 16ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  a  e.  { 0 ,  1 ,  2 } )  -> 
( N `  a
)  e.  NN )
1812, 17ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  a  e.  { 0 ,  1 ,  2 } )  -> 
( L `  ( N `  a )
)  e.  RR )
1918recnd 10068 . . . . 5  |-  ( (
ph  /\  a  e.  { 0 ,  1 ,  2 } )  -> 
( L `  ( N `  a )
)  e.  CC )
202, 4, 9, 10, 19fprodf1o 14676 . . . 4  |-  ( ph  ->  prod_ a  e.  {
0 ,  1 ,  2 }  ( L `
 ( N `  a ) )  = 
prod_ b  e.  { 0 ,  1 ,  2 }  ( L `  ( N `  ( T `
 b ) ) ) )
21 hgt750lemg.f . . . . . . . . . . 11  |-  F  =  ( c  e.  R  |->  ( c  o.  T
) )
2221a1i 11 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( c  e.  R  |->  ( c  o.  T ) ) )
23 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  c  =  N )  ->  c  =  N )
2423coeq1d 5283 . . . . . . . . . 10  |-  ( (
ph  /\  c  =  N )  ->  (
c  o.  T )  =  ( N  o.  T ) )
25 hgt750lemg.1 . . . . . . . . . 10  |-  ( ph  ->  N  e.  R )
26 f1of 6137 . . . . . . . . . . . . 13  |-  ( T : ( 0..^ 3 ) -1-1-onto-> ( 0..^ 3 )  ->  T : ( 0..^ 3 ) --> ( 0..^ 3 ) )
275, 26syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  T : ( 0..^ 3 ) --> ( 0..^ 3 ) )
28 ovexd 6680 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0..^ 3 )  e.  _V )
29 fex2 7121 . . . . . . . . . . . 12  |-  ( ( T : ( 0..^ 3 ) --> ( 0..^ 3 )  /\  (
0..^ 3 )  e. 
_V  /\  ( 0..^ 3 )  e.  _V )  ->  T  e.  _V )
3027, 28, 28, 29syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  T  e.  _V )
31 coexg 7117 . . . . . . . . . . 11  |-  ( ( N  e.  R  /\  T  e.  _V )  ->  ( N  o.  T
)  e.  _V )
3225, 30, 31syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( N  o.  T
)  e.  _V )
3322, 24, 25, 32fvmptd 6288 . . . . . . . . 9  |-  ( ph  ->  ( F `  N
)  =  ( N  o.  T ) )
3433adantr 481 . . . . . . . 8  |-  ( (
ph  /\  b  e.  { 0 ,  1 ,  2 } )  -> 
( F `  N
)  =  ( N  o.  T ) )
3534fveq1d 6193 . . . . . . 7  |-  ( (
ph  /\  b  e.  { 0 ,  1 ,  2 } )  -> 
( ( F `  N ) `  b
)  =  ( ( N  o.  T ) `
 b ) )
36 f1ofun 6139 . . . . . . . . . 10  |-  ( T : ( 0..^ 3 ) -1-1-onto-> ( 0..^ 3 )  ->  Fun  T )
375, 36syl 17 . . . . . . . . 9  |-  ( ph  ->  Fun  T )
3837adantr 481 . . . . . . . 8  |-  ( (
ph  /\  b  e.  { 0 ,  1 ,  2 } )  ->  Fun  T )
39 f1odm 6141 . . . . . . . . . . 11  |-  ( T : { 0 ,  1 ,  2 } -1-1-onto-> { 0 ,  1 ,  2 }  ->  dom  T  =  { 0 ,  1 ,  2 } )
409, 39syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  T  =  {
0 ,  1 ,  2 } )
4140eleq2d 2687 . . . . . . . . 9  |-  ( ph  ->  ( b  e.  dom  T  <-> 
b  e.  { 0 ,  1 ,  2 } ) )
4241biimpar 502 . . . . . . . 8  |-  ( (
ph  /\  b  e.  { 0 ,  1 ,  2 } )  -> 
b  e.  dom  T
)
43 fvco 6274 . . . . . . . 8  |-  ( ( Fun  T  /\  b  e.  dom  T )  -> 
( ( N  o.  T ) `  b
)  =  ( N `
 ( T `  b ) ) )
4438, 42, 43syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  b  e.  { 0 ,  1 ,  2 } )  -> 
( ( N  o.  T ) `  b
)  =  ( N `
 ( T `  b ) ) )
4535, 44eqtr2d 2657 . . . . . 6  |-  ( (
ph  /\  b  e.  { 0 ,  1 ,  2 } )  -> 
( N `  ( T `  b )
)  =  ( ( F `  N ) `
 b ) )
4645fveq2d 6195 . . . . 5  |-  ( (
ph  /\  b  e.  { 0 ,  1 ,  2 } )  -> 
( L `  ( N `  ( T `  b ) ) )  =  ( L `  ( ( F `  N ) `  b
) ) )
4746prodeq2dv 14653 . . . 4  |-  ( ph  ->  prod_ b  e.  {
0 ,  1 ,  2 }  ( L `
 ( N `  ( T `  b ) ) )  =  prod_ b  e.  { 0 ,  1 ,  2 }  ( L `  (
( F `  N
) `  b )
) )
4820, 47eqtr2d 2657 . . 3  |-  ( ph  ->  prod_ b  e.  {
0 ,  1 ,  2 }  ( L `
 ( ( F `
 N ) `  b ) )  = 
prod_ a  e.  { 0 ,  1 ,  2 }  ( L `  ( N `  a ) ) )
49 fveq2 6191 . . . . 5  |-  ( b  =  0  ->  (
( F `  N
) `  b )  =  ( ( F `
 N ) ` 
0 ) )
5049fveq2d 6195 . . . 4  |-  ( b  =  0  ->  ( L `  ( ( F `  N ) `  b ) )  =  ( L `  (
( F `  N
) `  0 )
) )
51 fveq2 6191 . . . . 5  |-  ( b  =  1  ->  (
( F `  N
) `  b )  =  ( ( F `
 N ) ` 
1 ) )
5251fveq2d 6195 . . . 4  |-  ( b  =  1  ->  ( L `  ( ( F `  N ) `  b ) )  =  ( L `  (
( F `  N
) `  1 )
) )
53 c0ex 10034 . . . . 5  |-  0  e.  _V
5453a1i 11 . . . 4  |-  ( ph  ->  0  e.  _V )
55 1ex 10035 . . . . 5  |-  1  e.  _V
5655a1i 11 . . . 4  |-  ( ph  ->  1  e.  _V )
5733fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  ( ( F `  N ) `  0
)  =  ( ( N  o.  T ) `
 0 ) )
5853tpid1 4303 . . . . . . . . . 10  |-  0  e.  { 0 ,  1 ,  2 }
5958, 40syl5eleqr 2708 . . . . . . . . 9  |-  ( ph  ->  0  e.  dom  T
)
60 fvco 6274 . . . . . . . . 9  |-  ( ( Fun  T  /\  0  e.  dom  T )  -> 
( ( N  o.  T ) `  0
)  =  ( N `
 ( T ` 
0 ) ) )
6137, 59, 60syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( N  o.  T ) `  0
)  =  ( N `
 ( T ` 
0 ) ) )
6257, 61eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( F `  N ) `  0
)  =  ( N `
 ( T ` 
0 ) ) )
6358, 6eleqtrri 2700 . . . . . . . . . 10  |-  0  e.  ( 0..^ 3 )
6463a1i 11 . . . . . . . . 9  |-  ( ph  ->  0  e.  ( 0..^ 3 ) )
6527, 64ffvelrnd 6360 . . . . . . . 8  |-  ( ph  ->  ( T `  0
)  e.  ( 0..^ 3 ) )
6613, 65ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( N `  ( T `  0 )
)  e.  NN )
6762, 66eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( ( F `  N ) `  0
)  e.  NN )
6811, 67ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( L `  (
( F `  N
) `  0 )
)  e.  RR )
6968recnd 10068 . . . 4  |-  ( ph  ->  ( L `  (
( F `  N
) `  0 )
)  e.  CC )
7033fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  ( ( F `  N ) `  1
)  =  ( ( N  o.  T ) `
 1 ) )
7155tpid2 4304 . . . . . . . . . 10  |-  1  e.  { 0 ,  1 ,  2 }
7271, 40syl5eleqr 2708 . . . . . . . . 9  |-  ( ph  ->  1  e.  dom  T
)
73 fvco 6274 . . . . . . . . 9  |-  ( ( Fun  T  /\  1  e.  dom  T )  -> 
( ( N  o.  T ) `  1
)  =  ( N `
 ( T ` 
1 ) ) )
7437, 72, 73syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( N  o.  T ) `  1
)  =  ( N `
 ( T ` 
1 ) ) )
7570, 74eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( F `  N ) `  1
)  =  ( N `
 ( T ` 
1 ) ) )
7671, 6eleqtrri 2700 . . . . . . . . . 10  |-  1  e.  ( 0..^ 3 )
7776a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  ( 0..^ 3 ) )
7827, 77ffvelrnd 6360 . . . . . . . 8  |-  ( ph  ->  ( T `  1
)  e.  ( 0..^ 3 ) )
7913, 78ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( N `  ( T `  1 )
)  e.  NN )
8075, 79eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( ( F `  N ) `  1
)  e.  NN )
8111, 80ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( L `  (
( F `  N
) `  1 )
)  e.  RR )
8281recnd 10068 . . . 4  |-  ( ph  ->  ( L `  (
( F `  N
) `  1 )
)  e.  CC )
83 0ne1 11088 . . . . 5  |-  0  =/=  1
8483a1i 11 . . . 4  |-  ( ph  ->  0  =/=  1 )
85 fveq2 6191 . . . . 5  |-  ( b  =  2  ->  (
( F `  N
) `  b )  =  ( ( F `
 N ) ` 
2 ) )
8685fveq2d 6195 . . . 4  |-  ( b  =  2  ->  ( L `  ( ( F `  N ) `  b ) )  =  ( L `  (
( F `  N
) `  2 )
) )
87 2ex 11092 . . . . 5  |-  2  e.  _V
8887a1i 11 . . . 4  |-  ( ph  ->  2  e.  _V )
8933fveq1d 6193 . . . . . . . 8  |-  ( ph  ->  ( ( F `  N ) `  2
)  =  ( ( N  o.  T ) `
 2 ) )
9087tpid3 4307 . . . . . . . . . 10  |-  2  e.  { 0 ,  1 ,  2 }
9190, 40syl5eleqr 2708 . . . . . . . . 9  |-  ( ph  ->  2  e.  dom  T
)
92 fvco 6274 . . . . . . . . 9  |-  ( ( Fun  T  /\  2  e.  dom  T )  -> 
( ( N  o.  T ) `  2
)  =  ( N `
 ( T ` 
2 ) ) )
9337, 91, 92syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( N  o.  T ) `  2
)  =  ( N `
 ( T ` 
2 ) ) )
9489, 93eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( F `  N ) `  2
)  =  ( N `
 ( T ` 
2 ) ) )
9590, 6eleqtrri 2700 . . . . . . . . . 10  |-  2  e.  ( 0..^ 3 )
9695a1i 11 . . . . . . . . 9  |-  ( ph  ->  2  e.  ( 0..^ 3 ) )
9727, 96ffvelrnd 6360 . . . . . . . 8  |-  ( ph  ->  ( T `  2
)  e.  ( 0..^ 3 ) )
9813, 97ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( N `  ( T `  2 )
)  e.  NN )
9994, 98eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( ( F `  N ) `  2
)  e.  NN )
10011, 99ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( L `  (
( F `  N
) `  2 )
)  e.  RR )
101100recnd 10068 . . . 4  |-  ( ph  ->  ( L `  (
( F `  N
) `  2 )
)  e.  CC )
102 0ne2 11239 . . . . 5  |-  0  =/=  2
103102a1i 11 . . . 4  |-  ( ph  ->  0  =/=  2 )
104 1ne2 11240 . . . . 5  |-  1  =/=  2
105104a1i 11 . . . 4  |-  ( ph  ->  1  =/=  2 )
10650, 52, 54, 56, 69, 82, 84, 86, 88, 101, 103, 105prodtp 29573 . . 3  |-  ( ph  ->  prod_ b  e.  {
0 ,  1 ,  2 }  ( L `
 ( ( F `
 N ) `  b ) )  =  ( ( ( L `
 ( ( F `
 N ) ` 
0 ) )  x.  ( L `  (
( F `  N
) `  1 )
) )  x.  ( L `  ( ( F `  N ) `  2 ) ) ) )
107 fveq2 6191 . . . . 5  |-  ( a  =  0  ->  ( N `  a )  =  ( N ` 
0 ) )
108107fveq2d 6195 . . . 4  |-  ( a  =  0  ->  ( L `  ( N `  a ) )  =  ( L `  ( N `  0 )
) )
109 fveq2 6191 . . . . 5  |-  ( a  =  1  ->  ( N `  a )  =  ( N ` 
1 ) )
110109fveq2d 6195 . . . 4  |-  ( a  =  1  ->  ( L `  ( N `  a ) )  =  ( L `  ( N `  1 )
) )
11113, 64ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( N `  0
)  e.  NN )
11211, 111ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( L `  ( N `  0 )
)  e.  RR )
113112recnd 10068 . . . 4  |-  ( ph  ->  ( L `  ( N `  0 )
)  e.  CC )
11413, 77ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( N `  1
)  e.  NN )
11511, 114ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( L `  ( N `  1 )
)  e.  RR )
116115recnd 10068 . . . 4  |-  ( ph  ->  ( L `  ( N `  1 )
)  e.  CC )
117 fveq2 6191 . . . . 5  |-  ( a  =  2  ->  ( N `  a )  =  ( N ` 
2 ) )
118117fveq2d 6195 . . . 4  |-  ( a  =  2  ->  ( L `  ( N `  a ) )  =  ( L `  ( N `  2 )
) )
11913, 96ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( N `  2
)  e.  NN )
12011, 119ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( L `  ( N `  2 )
)  e.  RR )
121120recnd 10068 . . . 4  |-  ( ph  ->  ( L `  ( N `  2 )
)  e.  CC )
122108, 110, 54, 56, 113, 116, 84, 118, 88, 121, 103, 105prodtp 29573 . . 3  |-  ( ph  ->  prod_ a  e.  {
0 ,  1 ,  2 }  ( L `
 ( N `  a ) )  =  ( ( ( L `
 ( N ` 
0 ) )  x.  ( L `  ( N `  1 )
) )  x.  ( L `  ( N `  2 ) ) ) )
12348, 106, 1223eqtr3d 2664 . 2  |-  ( ph  ->  ( ( ( L `
 ( ( F `
 N ) ` 
0 ) )  x.  ( L `  (
( F `  N
) `  1 )
) )  x.  ( L `  ( ( F `  N ) `  2 ) ) )  =  ( ( ( L `  ( N `  0 )
)  x.  ( L `
 ( N ` 
1 ) ) )  x.  ( L `  ( N `  2 ) ) ) )
12469, 82, 101mulassd 10063 . 2  |-  ( ph  ->  ( ( ( L `
 ( ( F `
 N ) ` 
0 ) )  x.  ( L `  (
( F `  N
) `  1 )
) )  x.  ( L `  ( ( F `  N ) `  2 ) ) )  =  ( ( L `  ( ( F `  N ) `
 0 ) )  x.  ( ( L `
 ( ( F `
 N ) ` 
1 ) )  x.  ( L `  (
( F `  N
) `  2 )
) ) ) )
125113, 116, 121mulassd 10063 . 2  |-  ( ph  ->  ( ( ( L `
 ( N ` 
0 ) )  x.  ( L `  ( N `  1 )
) )  x.  ( L `  ( N `  2 ) ) )  =  ( ( L `  ( N `
 0 ) )  x.  ( ( L `
 ( N ` 
1 ) )  x.  ( L `  ( N `  2 )
) ) ) )
126123, 124, 1253eqtr3d 2664 1  |-  ( ph  ->  ( ( L `  ( ( F `  N ) `  0
) )  x.  (
( L `  (
( F `  N
) `  1 )
)  x.  ( L `
 ( ( F `
 N ) ` 
2 ) ) ) )  =  ( ( L `  ( N `
 0 ) )  x.  ( ( L `
 ( N ` 
1 ) )  x.  ( L `  ( N `  2 )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   {ctp 4181    |-> cmpt 4729   dom cdm 5114    o. ccom 5118   Fun wfun 5882   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   2c2 11070   3c3 11071  ..^cfzo 12465   prod_cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  hgt750lema  30735
  Copyright terms: Public domain W3C validator