MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqshft Structured version   Visualization version   Unicode version

Theorem seqshft 13825
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-Feb-2014.)
Hypothesis
Ref Expression
seqshft.1  |-  F  e. 
_V
Assertion
Ref Expression
seqshft  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )

Proof of Theorem seqshft
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqfn 12813 . . 3  |-  ( M  e.  ZZ  ->  seq M (  .+  , 
( F  shift  N ) )  Fn  ( ZZ>= `  M ) )
21adantr 481 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  seq M (  .+  ,  ( F  shift  N ) )  Fn  ( ZZ>=
`  M ) )
3 zsubcl 11419 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )
4 seqfn 12813 . . . . 5  |-  ( ( M  -  N )  e.  ZZ  ->  seq ( M  -  N
) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) ) )
53, 4syl 17 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) ) )
6 zcn 11382 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
76adantl 482 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
8 seqex 12803 . . . . 5  |-  seq ( M  -  N )
(  .+  ,  F
)  e.  _V
98shftfn 13813 . . . 4  |-  ( (  seq ( M  -  N ) (  .+  ,  F )  Fn  ( ZZ>=
`  ( M  -  N ) )  /\  N  e.  CC )  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
105, 7, 9syl2anc 693 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  {
x  e.  CC  | 
( x  -  N
)  e.  ( ZZ>= `  ( M  -  N
) ) } )
11 simpr 477 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
12 shftuz 13809 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( M  -  N
)  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  N )  e.  ( ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
1311, 3, 12syl2anc 693 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  (
( M  -  N
)  +  N ) ) )
14 zcn 11382 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
15 npcan 10290 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  -  N )  +  N
)  =  M )
1614, 6, 15syl2an 494 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  -  N )  +  N
)  =  M )
1716fveq2d 6195 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ZZ>= `  ( ( M  -  N )  +  N ) )  =  ( ZZ>= `  M )
)
1813, 17eqtrd 2656 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  { x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  =  ( ZZ>= `  M
) )
1918fneq2d 5982 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N )  Fn 
{ x  e.  CC  |  ( x  -  N )  e.  (
ZZ>= `  ( M  -  N ) ) }  <-> 
(  seq ( M  -  N ) (  .+  ,  F )  shift  N )  Fn  ( ZZ>= `  M
) ) )
2010, 19mpbid 222 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  (  seq ( M  -  N ) ( 
.+  ,  F ) 
shift  N )  Fn  ( ZZ>=
`  M ) )
21 negsub 10329 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  +  -u N )  =  ( M  -  N ) )
2214, 6, 21syl2an 494 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  -u N )  =  ( M  -  N ) )
2322adantr 481 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  M ) )  ->  ( M  +  -u N )  =  ( M  -  N ) )
2423seqeq1d 12807 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  M ) )  ->  seq ( M  +  -u N ) (  .+  ,  F )  =  seq ( M  -  N
) (  .+  ,  F ) )
25 eluzelcn 11699 . . . . 5  |-  ( z  e.  ( ZZ>= `  M
)  ->  z  e.  CC )
26 negsub 10329 . . . . 5  |-  ( ( z  e.  CC  /\  N  e.  CC )  ->  ( z  +  -u N )  =  ( z  -  N ) )
2725, 7, 26syl2anr 495 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  M ) )  ->  ( z  + 
-u N )  =  ( z  -  N
) )
2824, 27fveq12d 6197 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  M ) )  ->  (  seq ( M  +  -u N ) (  .+  ,  F
) `  ( z  +  -u N ) )  =  (  seq ( M  -  N )
(  .+  ,  F
) `  ( z  -  N ) ) )
29 simpr 477 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  M ) )  ->  z  e.  (
ZZ>= `  M ) )
30 znegcl 11412 . . . . 5  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
3130ad2antlr 763 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  M ) )  ->  -u N  e.  ZZ )
32 elfzelz 12342 . . . . . . 7  |-  ( y  e.  ( M ... z )  ->  y  e.  ZZ )
3332zcnd 11483 . . . . . 6  |-  ( y  e.  ( M ... z )  ->  y  e.  CC )
34 seqshft.1 . . . . . . . 8  |-  F  e. 
_V
3534shftval 13814 . . . . . . 7  |-  ( ( N  e.  CC  /\  y  e.  CC )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  -  N
) ) )
36 negsub 10329 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  N  e.  CC )  ->  ( y  +  -u N )  =  ( y  -  N ) )
3736ancoms 469 . . . . . . . 8  |-  ( ( N  e.  CC  /\  y  e.  CC )  ->  ( y  +  -u N )  =  ( y  -  N ) )
3837fveq2d 6195 . . . . . . 7  |-  ( ( N  e.  CC  /\  y  e.  CC )  ->  ( F `  (
y  +  -u N
) )  =  ( F `  ( y  -  N ) ) )
3935, 38eqtr4d 2659 . . . . . 6  |-  ( ( N  e.  CC  /\  y  e.  CC )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  +  -u N ) ) )
406, 33, 39syl2an 494 . . . . 5  |-  ( ( N  e.  ZZ  /\  y  e.  ( M ... z ) )  -> 
( ( F  shift  N ) `  y )  =  ( F `  ( y  +  -u N ) ) )
4140ad4ant24 1298 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  z  e.  ( ZZ>= `  M )
)  /\  y  e.  ( M ... z ) )  ->  ( ( F  shift  N ) `  y )  =  ( F `  ( y  +  -u N ) ) )
4229, 31, 41seqshft2 12827 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  M ) )  ->  (  seq M
(  .+  ,  ( F  shift  N ) ) `
 z )  =  (  seq ( M  +  -u N ) ( 
.+  ,  F ) `
 ( z  + 
-u N ) ) )
438shftval 13814 . . . 4  |-  ( ( N  e.  CC  /\  z  e.  CC )  ->  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N ) `  z )  =  (  seq ( M  -  N ) (  .+  ,  F ) `  (
z  -  N ) ) )
447, 25, 43syl2an 494 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  M ) )  ->  ( (  seq ( M  -  N
) (  .+  ,  F )  shift  N ) `
 z )  =  (  seq ( M  -  N ) ( 
.+  ,  F ) `
 ( z  -  N ) ) )
4528, 42, 443eqtr4d 2666 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  M ) )  ->  (  seq M
(  .+  ,  ( F  shift  N ) ) `
 z )  =  ( (  seq ( M  -  N )
(  .+  ,  F
)  shift  N ) `  z ) )
462, 20, 45eqfnfvd 6314 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  seq M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   CCcc 9934    + caddc 9939    - cmin 10266   -ucneg 10267   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801    shift cshi 13806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-shft 13807
This theorem is referenced by:  isershft  14394  cvgrat  14615  eftlub  14839  dvradcnv2  38546  binomcxplemnotnn0  38555
  Copyright terms: Public domain W3C validator