Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvradcnv2 Structured version   Visualization version   Unicode version

Theorem dvradcnv2 38546
Description: The radius of convergence of the (formal) derivative  H of the power series  G is (at least) as large as the radius of convergence of  G. This version of dvradcnv 24175 uses a shifted version of  H to match the sum form of  ( CC  _D  F
) in pserdv2 24184 (and shows how to use uzmptshftfval 38545 to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
dvradcnv2.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
dvradcnv2.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
dvradcnv2.h  |-  H  =  ( n  e.  NN  |->  ( ( n  x.  ( A `  n
) )  x.  ( X ^ ( n  - 
1 ) ) ) )
dvradcnv2.a  |-  ( ph  ->  A : NN0 --> CC )
dvradcnv2.x  |-  ( ph  ->  X  e.  CC )
dvradcnv2.l  |-  ( ph  ->  ( abs `  X
)  <  R )
Assertion
Ref Expression
dvradcnv2  |-  ( ph  ->  seq 1 (  +  ,  H )  e. 
dom 
~~>  )
Distinct variable groups:    x, r, X    x, n, A    n, X    G, r
Allowed substitution hints:    ph( x, n, r)    A( r)    R( x, n, r)    G( x, n)    H( x, n, r)

Proof of Theorem dvradcnv2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 0cn 10032 . . . . 5  |-  0  e.  CC
2 ax-1cn 9994 . . . . 5  |-  1  e.  CC
31, 2subnegi 10360 . . . 4  |-  ( 0  -  -u 1 )  =  ( 0  +  1 )
4 0p1e1 11132 . . . 4  |-  ( 0  +  1 )  =  1
53, 4eqtri 2644 . . 3  |-  ( 0  -  -u 1 )  =  1
6 seqeq1 12804 . . 3  |-  ( ( 0  -  -u 1
)  =  1  ->  seq ( 0  -  -u 1
) (  +  ,  H )  =  seq 1 (  +  ,  H ) )
75, 6ax-mp 5 . 2  |-  seq (
0  -  -u 1
) (  +  ,  H )  =  seq 1 (  +  ,  H )
8 dvradcnv2.h . . . . . . . 8  |-  H  =  ( n  e.  NN  |->  ( ( n  x.  ( A `  n
) )  x.  ( X ^ ( n  - 
1 ) ) ) )
9 ovex 6678 . . . . . . . 8  |-  ( ( n  x.  ( A `
 n ) )  x.  ( X ^
( n  -  1 ) ) )  e. 
_V
10 id 22 . . . . . . . . . 10  |-  ( n  =  ( m  -  -u 1 )  ->  n  =  ( m  -  -u 1 ) )
11 fveq2 6191 . . . . . . . . . 10  |-  ( n  =  ( m  -  -u 1 )  ->  ( A `  n )  =  ( A `  ( m  -  -u 1
) ) )
1210, 11oveq12d 6668 . . . . . . . . 9  |-  ( n  =  ( m  -  -u 1 )  ->  (
n  x.  ( A `
 n ) )  =  ( ( m  -  -u 1 )  x.  ( A `  (
m  -  -u 1
) ) ) )
13 oveq1 6657 . . . . . . . . . 10  |-  ( n  =  ( m  -  -u 1 )  ->  (
n  -  1 )  =  ( ( m  -  -u 1 )  - 
1 ) )
1413oveq2d 6666 . . . . . . . . 9  |-  ( n  =  ( m  -  -u 1 )  ->  ( X ^ ( n  - 
1 ) )  =  ( X ^ (
( m  -  -u 1
)  -  1 ) ) )
1512, 14oveq12d 6668 . . . . . . . 8  |-  ( n  =  ( m  -  -u 1 )  ->  (
( n  x.  ( A `  n )
)  x.  ( X ^ ( n  - 
1 ) ) )  =  ( ( ( m  -  -u 1
)  x.  ( A `
 ( m  -  -u 1 ) ) )  x.  ( X ^
( ( m  -  -u 1 )  -  1 ) ) ) )
16 nnuz 11723 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
17 nn0uz 11722 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
18 1pneg1e0 11129 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  0
1918fveq2i 6194 . . . . . . . . 9  |-  ( ZZ>= `  ( 1  +  -u
1 ) )  =  ( ZZ>= `  0 )
2017, 19eqtr4i 2647 . . . . . . . 8  |-  NN0  =  ( ZZ>= `  ( 1  +  -u 1 ) )
21 1zzd 11408 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
2221znegcld 11484 . . . . . . . 8  |-  ( ph  -> 
-u 1  e.  ZZ )
238, 9, 15, 16, 20, 21, 22uzmptshftfval 38545 . . . . . . 7  |-  ( ph  ->  ( H  shift  -u 1
)  =  ( m  e.  NN0  |->  ( ( ( m  -  -u 1
)  x.  ( A `
 ( m  -  -u 1 ) ) )  x.  ( X ^
( ( m  -  -u 1 )  -  1 ) ) ) ) )
24 nn0cn 11302 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  m  e.  CC )
2524adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  CC )
26 1cnd 10056 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  1  e.  CC )
2725, 26subnegd 10399 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( m  -  -u 1 )  =  ( m  +  1 ) )
2827fveq2d 6195 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( A `  ( m  -  -u 1
) )  =  ( A `  ( m  +  1 ) ) )
2927, 28oveq12d 6668 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
m  -  -u 1
)  x.  ( A `
 ( m  -  -u 1 ) ) )  =  ( ( m  +  1 )  x.  ( A `  (
m  +  1 ) ) ) )
3027oveq1d 6665 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
m  -  -u 1
)  -  1 )  =  ( ( m  +  1 )  - 
1 ) )
3125, 26pncand 10393 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
m  +  1 )  -  1 )  =  m )
3230, 31eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
m  -  -u 1
)  -  1 )  =  m )
3332oveq2d 6666 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( X ^ ( ( m  -  -u 1 )  - 
1 ) )  =  ( X ^ m
) )
3429, 33oveq12d 6668 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
( m  -  -u 1
)  x.  ( A `
 ( m  -  -u 1 ) ) )  x.  ( X ^
( ( m  -  -u 1 )  -  1 ) ) )  =  ( ( ( m  +  1 )  x.  ( A `  (
m  +  1 ) ) )  x.  ( X ^ m ) ) )
3534mpteq2dva 4744 . . . . . . 7  |-  ( ph  ->  ( m  e.  NN0  |->  ( ( ( m  -  -u 1 )  x.  ( A `  (
m  -  -u 1
) ) )  x.  ( X ^ (
( m  -  -u 1
)  -  1 ) ) ) )  =  ( m  e.  NN0  |->  ( ( ( m  +  1 )  x.  ( A `  (
m  +  1 ) ) )  x.  ( X ^ m ) ) ) )
3623, 35eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( H  shift  -u 1
)  =  ( m  e.  NN0  |->  ( ( ( m  +  1 )  x.  ( A `
 ( m  + 
1 ) ) )  x.  ( X ^
m ) ) ) )
3736seqeq3d 12809 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  ( H  shift  -u
1 ) )  =  seq 0 (  +  ,  ( m  e. 
NN0  |->  ( ( ( m  +  1 )  x.  ( A `  ( m  +  1
) ) )  x.  ( X ^ m
) ) ) ) )
38 dvradcnv2.g . . . . . . 7  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
39 fveq2 6191 . . . . . . . . . 10  |-  ( n  =  m  ->  ( A `  n )  =  ( A `  m ) )
40 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  m  ->  (
x ^ n )  =  ( x ^
m ) )
4139, 40oveq12d 6668 . . . . . . . . 9  |-  ( n  =  m  ->  (
( A `  n
)  x.  ( x ^ n ) )  =  ( ( A `
 m )  x.  ( x ^ m
) ) )
4241cbvmptv 4750 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) )  =  ( m  e. 
NN0  |->  ( ( A `
 m )  x.  ( x ^ m
) ) )
4342mpteq2i 4741 . . . . . . 7  |-  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( x ^
n ) ) ) )  =  ( x  e.  CC  |->  ( m  e.  NN0  |->  ( ( A `  m )  x.  ( x ^
m ) ) ) )
4438, 43eqtri 2644 . . . . . 6  |-  G  =  ( x  e.  CC  |->  ( m  e.  NN0  |->  ( ( A `  m )  x.  (
x ^ m ) ) ) )
45 dvradcnv2.r . . . . . 6  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
46 eqid 2622 . . . . . 6  |-  ( m  e.  NN0  |->  ( ( ( m  +  1 )  x.  ( A `
 ( m  + 
1 ) ) )  x.  ( X ^
m ) ) )  =  ( m  e. 
NN0  |->  ( ( ( m  +  1 )  x.  ( A `  ( m  +  1
) ) )  x.  ( X ^ m
) ) )
47 dvradcnv2.a . . . . . 6  |-  ( ph  ->  A : NN0 --> CC )
48 dvradcnv2.x . . . . . 6  |-  ( ph  ->  X  e.  CC )
49 dvradcnv2.l . . . . . 6  |-  ( ph  ->  ( abs `  X
)  <  R )
5044, 45, 46, 47, 48, 49dvradcnv 24175 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  ( m  e. 
NN0  |->  ( ( ( m  +  1 )  x.  ( A `  ( m  +  1
) ) )  x.  ( X ^ m
) ) ) )  e.  dom  ~~>  )
5137, 50eqeltrd 2701 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( H  shift  -u
1 ) )  e. 
dom 
~~>  )
52 climdm 14285 . . . 4  |-  (  seq 0 (  +  , 
( H  shift  -u 1
) )  e.  dom  ~~>  <->  seq 0 (  +  , 
( H  shift  -u 1
) )  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) ) )
5351, 52sylib 208 . . 3  |-  ( ph  ->  seq 0 (  +  ,  ( H  shift  -u
1 ) )  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) ) )
54 0z 11388 . . . . . . 7  |-  0  e.  ZZ
55 neg1z 11413 . . . . . . 7  |-  -u 1  e.  ZZ
56 nnex 11026 . . . . . . . . . 10  |-  NN  e.  _V
5756mptex 6486 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( n  x.  ( A `
 n ) )  x.  ( X ^
( n  -  1 ) ) ) )  e.  _V
588, 57eqeltri 2697 . . . . . . . 8  |-  H  e. 
_V
5958seqshft 13825 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  -u 1  e.  ZZ )  ->  seq 0 (  +  ,  ( H  shift  -u
1 ) )  =  (  seq ( 0  -  -u 1 ) (  +  ,  H ) 
shift  -u 1 ) )
6054, 55, 59mp2an 708 . . . . . 6  |-  seq 0
(  +  ,  ( H  shift  -u 1 ) )  =  (  seq ( 0  -  -u 1
) (  +  ,  H )  shift  -u 1
)
6160breq1i 4660 . . . . 5  |-  (  seq 0 (  +  , 
( H  shift  -u 1
) )  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) )  <->  (  seq ( 0  -  -u 1
) (  +  ,  H )  shift  -u 1
)  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) ) )
62 seqex 12803 . . . . . 6  |-  seq (
0  -  -u 1
) (  +  ,  H )  e.  _V
63 climshft 14307 . . . . . 6  |-  ( (
-u 1  e.  ZZ  /\ 
seq ( 0  - 
-u 1 ) (  +  ,  H )  e.  _V )  -> 
( (  seq (
0  -  -u 1
) (  +  ,  H )  shift  -u 1
)  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) )  <->  seq (
0  -  -u 1
) (  +  ,  H )  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) ) ) )
6455, 62, 63mp2an 708 . . . . 5  |-  ( (  seq ( 0  - 
-u 1 ) (  +  ,  H ) 
shift  -u 1 )  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) )  <->  seq (
0  -  -u 1
) (  +  ,  H )  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) ) )
6561, 64bitri 264 . . . 4  |-  (  seq 0 (  +  , 
( H  shift  -u 1
) )  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) )  <->  seq (
0  -  -u 1
) (  +  ,  H )  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) ) )
66 fvex 6201 . . . . 5  |-  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) )  e. 
_V
6762, 66breldm 5329 . . . 4  |-  (  seq ( 0  -  -u 1
) (  +  ,  H )  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) )  ->  seq ( 0  -  -u 1
) (  +  ,  H )  e.  dom  ~~>  )
6865, 67sylbi 207 . . 3  |-  (  seq 0 (  +  , 
( H  shift  -u 1
) )  ~~>  (  ~~>  `  seq 0 (  +  , 
( H  shift  -u 1
) ) )  ->  seq ( 0  -  -u 1
) (  +  ,  H )  e.  dom  ~~>  )
6953, 68syl 17 . 2  |-  ( ph  ->  seq ( 0  - 
-u 1 ) (  +  ,  H )  e.  dom  ~~>  )
707, 69syl5eqelr 2706 1  |-  ( ph  ->  seq 1 (  +  ,  H )  e. 
dom 
~~>  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    - cmin 10266   -ucneg 10267   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801   ^cexp 12860    shift cshi 13806   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  binomcxplemcvg  38553
  Copyright terms: Public domain W3C validator