MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhval Structured version   Visualization version   Unicode version

Theorem sinhval 14884
Description: Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
sinhval  |-  ( A  e.  CC  ->  (
( sin `  (
_i  x.  A )
)  /  _i )  =  ( ( ( exp `  A )  -  ( exp `  -u A
) )  /  2
) )

Proof of Theorem sinhval
StepHypRef Expression
1 ixi 10656 . . . . . . . . 9  |-  ( _i  x.  _i )  = 
-u 1
21oveq1i 6660 . . . . . . . 8  |-  ( ( _i  x.  _i )  x.  A )  =  ( -u 1  x.  A )
3 ax-icn 9995 . . . . . . . . 9  |-  _i  e.  CC
4 mulass 10024 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  A  e.  CC )  ->  (
( _i  x.  _i )  x.  A )  =  ( _i  x.  ( _i  x.  A
) ) )
53, 3, 4mp3an12 1414 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  A )  =  ( _i  x.  ( _i  x.  A
) ) )
6 mulm1 10471 . . . . . . . 8  |-  ( A  e.  CC  ->  ( -u 1  x.  A )  =  -u A )
72, 5, 63eqtr3a 2680 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  ( _i  x.  A ) )  = 
-u A )
87fveq2d 6195 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( _i  x.  A
) ) )  =  ( exp `  -u A
) )
93, 3mulneg1i 10476 . . . . . . . . . 10  |-  ( -u _i  x.  _i )  = 
-u ( _i  x.  _i )
101negeqi 10274 . . . . . . . . . . 11  |-  -u (
_i  x.  _i )  =  -u -u 1
11 negneg1e1 11128 . . . . . . . . . . 11  |-  -u -u 1  =  1
1210, 11eqtri 2644 . . . . . . . . . 10  |-  -u (
_i  x.  _i )  =  1
139, 12eqtri 2644 . . . . . . . . 9  |-  ( -u _i  x.  _i )  =  1
1413oveq1i 6660 . . . . . . . 8  |-  ( (
-u _i  x.  _i )  x.  A )  =  ( 1  x.  A )
15 negicn 10282 . . . . . . . . 9  |-  -u _i  e.  CC
16 mulass 10024 . . . . . . . . 9  |-  ( (
-u _i  e.  CC  /\  _i  e.  CC  /\  A  e.  CC )  ->  ( ( -u _i  x.  _i )  x.  A
)  =  ( -u _i  x.  ( _i  x.  A ) ) )
1715, 3, 16mp3an12 1414 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( -u _i  x.  _i )  x.  A )  =  ( -u _i  x.  ( _i  x.  A
) ) )
18 mulid2 10038 . . . . . . . 8  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
1914, 17, 183eqtr3a 2680 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u _i  x.  ( _i  x.  A ) )  =  A )
2019fveq2d 6195 . . . . . 6  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  ( _i  x.  A
) ) )  =  ( exp `  A
) )
218, 20oveq12d 6668 . . . . 5  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  ( _i  x.  A ) ) )  -  ( exp `  ( -u _i  x.  ( _i  x.  A ) ) ) )  =  ( ( exp `  -u A
)  -  ( exp `  A ) ) )
2221oveq1d 6665 . . . 4  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  ( _i  x.  A ) ) )  -  ( exp `  ( -u _i  x.  ( _i  x.  A ) ) ) )  /  (
2  x.  _i ) )  =  ( ( ( exp `  -u A
)  -  ( exp `  A ) )  / 
( 2  x.  _i ) ) )
23 mulcl 10020 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
243, 23mpan 706 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
25 sinval 14852 . . . . 5  |-  ( ( _i  x.  A )  e.  CC  ->  ( sin `  ( _i  x.  A ) )  =  ( ( ( exp `  ( _i  x.  (
_i  x.  A )
) )  -  ( exp `  ( -u _i  x.  ( _i  x.  A
) ) ) )  /  ( 2  x.  _i ) ) )
2624, 25syl 17 . . . 4  |-  ( A  e.  CC  ->  ( sin `  ( _i  x.  A ) )  =  ( ( ( exp `  ( _i  x.  (
_i  x.  A )
) )  -  ( exp `  ( -u _i  x.  ( _i  x.  A
) ) ) )  /  ( 2  x.  _i ) ) )
27 irec 12964 . . . . . . . 8  |-  ( 1  /  _i )  = 
-u _i
2827negeqi 10274 . . . . . . 7  |-  -u (
1  /  _i )  =  -u -u _i
293negnegi 10351 . . . . . . 7  |-  -u -u _i  =  _i
3028, 29eqtri 2644 . . . . . 6  |-  -u (
1  /  _i )  =  _i
3130oveq1i 6660 . . . . 5  |-  ( -u ( 1  /  _i )  x.  ( (
( exp `  A
)  -  ( exp `  -u A ) )  /  2 ) )  =  ( _i  x.  ( ( ( exp `  A )  -  ( exp `  -u A ) )  /  2 ) )
32 ine0 10465 . . . . . . . 8  |-  _i  =/=  0
333, 32reccli 10755 . . . . . . 7  |-  ( 1  /  _i )  e.  CC
34 efcl 14813 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
35 negcl 10281 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u A  e.  CC )
36 efcl 14813 . . . . . . . . . 10  |-  ( -u A  e.  CC  ->  ( exp `  -u A
)  e.  CC )
3735, 36syl 17 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( exp `  -u A )  e.  CC )
3834, 37subcld 10392 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( exp `  A
)  -  ( exp `  -u A ) )  e.  CC )
3938halfcld 11277 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( exp `  A
)  -  ( exp `  -u A ) )  /  2 )  e.  CC )
40 mulneg12 10468 . . . . . . 7  |-  ( ( ( 1  /  _i )  e.  CC  /\  (
( ( exp `  A
)  -  ( exp `  -u A ) )  /  2 )  e.  CC )  ->  ( -u ( 1  /  _i )  x.  ( (
( exp `  A
)  -  ( exp `  -u A ) )  /  2 ) )  =  ( ( 1  /  _i )  x.  -u ( ( ( exp `  A )  -  ( exp `  -u A ) )  /  2 ) ) )
4133, 39, 40sylancr 695 . . . . . 6  |-  ( A  e.  CC  ->  ( -u ( 1  /  _i )  x.  ( (
( exp `  A
)  -  ( exp `  -u A ) )  /  2 ) )  =  ( ( 1  /  _i )  x.  -u ( ( ( exp `  A )  -  ( exp `  -u A ) )  /  2 ) ) )
42 2cnd 11093 . . . . . . . . . 10  |-  ( A  e.  CC  ->  2  e.  CC )
43 2ne0 11113 . . . . . . . . . . 11  |-  2  =/=  0
4443a1i 11 . . . . . . . . . 10  |-  ( A  e.  CC  ->  2  =/=  0 )
4538, 42, 44divnegd 10814 . . . . . . . . 9  |-  ( A  e.  CC  ->  -u (
( ( exp `  A
)  -  ( exp `  -u A ) )  /  2 )  =  ( -u ( ( exp `  A )  -  ( exp `  -u A
) )  /  2
) )
4634, 37negsubdi2d 10408 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u (
( exp `  A
)  -  ( exp `  -u A ) )  =  ( ( exp `  -u A )  -  ( exp `  A ) ) )
4746oveq1d 6665 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( -u ( ( exp `  A
)  -  ( exp `  -u A ) )  /  2 )  =  ( ( ( exp `  -u A )  -  ( exp `  A ) )  /  2 ) )
4845, 47eqtrd 2656 . . . . . . . 8  |-  ( A  e.  CC  ->  -u (
( ( exp `  A
)  -  ( exp `  -u A ) )  /  2 )  =  ( ( ( exp `  -u A )  -  ( exp `  A ) )  /  2 ) )
4948oveq2d 6666 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 1  /  _i )  x.  -u ( ( ( exp `  A
)  -  ( exp `  -u A ) )  /  2 ) )  =  ( ( 1  /  _i )  x.  ( ( ( exp `  -u A )  -  ( exp `  A ) )  /  2 ) ) )
5037, 34subcld 10392 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( exp `  -u A
)  -  ( exp `  A ) )  e.  CC )
5150halfcld 11277 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( ( exp `  -u A
)  -  ( exp `  A ) )  / 
2 )  e.  CC )
523a1i 11 . . . . . . . 8  |-  ( A  e.  CC  ->  _i  e.  CC )
5332a1i 11 . . . . . . . 8  |-  ( A  e.  CC  ->  _i  =/=  0 )
5451, 52, 53divrec2d 10805 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( ( exp `  -u A )  -  ( exp `  A ) )  /  2 )  /  _i )  =  ( ( 1  /  _i )  x.  (
( ( exp `  -u A
)  -  ( exp `  A ) )  / 
2 ) ) )
5550, 42, 52, 44, 53divdiv1d 10832 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( ( exp `  -u A )  -  ( exp `  A ) )  /  2 )  /  _i )  =  ( ( ( exp `  -u A )  -  ( exp `  A ) )  /  ( 2  x.  _i ) ) )
5649, 54, 553eqtr2d 2662 . . . . . 6  |-  ( A  e.  CC  ->  (
( 1  /  _i )  x.  -u ( ( ( exp `  A
)  -  ( exp `  -u A ) )  /  2 ) )  =  ( ( ( exp `  -u A
)  -  ( exp `  A ) )  / 
( 2  x.  _i ) ) )
5741, 56eqtrd 2656 . . . . 5  |-  ( A  e.  CC  ->  ( -u ( 1  /  _i )  x.  ( (
( exp `  A
)  -  ( exp `  -u A ) )  /  2 ) )  =  ( ( ( exp `  -u A
)  -  ( exp `  A ) )  / 
( 2  x.  _i ) ) )
5831, 57syl5eqr 2670 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( (
( exp `  A
)  -  ( exp `  -u A ) )  /  2 ) )  =  ( ( ( exp `  -u A
)  -  ( exp `  A ) )  / 
( 2  x.  _i ) ) )
5922, 26, 583eqtr4d 2666 . . 3  |-  ( A  e.  CC  ->  ( sin `  ( _i  x.  A ) )  =  ( _i  x.  (
( ( exp `  A
)  -  ( exp `  -u A ) )  /  2 ) ) )
6059oveq1d 6665 . 2  |-  ( A  e.  CC  ->  (
( sin `  (
_i  x.  A )
)  /  _i )  =  ( ( _i  x.  ( ( ( exp `  A )  -  ( exp `  -u A
) )  /  2
) )  /  _i ) )
6139, 52, 53divcan3d 10806 . 2  |-  ( A  e.  CC  ->  (
( _i  x.  (
( ( exp `  A
)  -  ( exp `  -u A ) )  /  2 ) )  /  _i )  =  ( ( ( exp `  A )  -  ( exp `  -u A ) )  /  2 ) )
6260, 61eqtrd 2656 1  |-  ( A  e.  CC  ->  (
( sin `  (
_i  x.  A )
)  /  _i )  =  ( ( ( exp `  A )  -  ( exp `  -u A
) )  /  2
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937   _ici 9938    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   expce 14792   sincsin 14794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800
This theorem is referenced by:  resinhcl  14886  tanhlt1  14890  sinhpcosh  42481
  Copyright terms: Public domain W3C validator