Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem32 Structured version   Visualization version   Unicode version

Theorem stoweidlem32 40249
Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem32.1  |-  F/ t
ph
stoweidlem32.2  |-  P  =  ( t  e.  T  |->  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
stoweidlem32.3  |-  F  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
stoweidlem32.4  |-  H  =  ( t  e.  T  |->  Y )
stoweidlem32.5  |-  ( ph  ->  M  e.  NN )
stoweidlem32.6  |-  ( ph  ->  Y  e.  RR )
stoweidlem32.7  |-  ( ph  ->  G : ( 1 ... M ) --> A )
stoweidlem32.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem32.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem32.10  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem32.11  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
Assertion
Ref Expression
stoweidlem32  |-  ( ph  ->  P  e.  A )
Distinct variable groups:    f, g,
i, t, G    A, f, g    f, F, g    T, f, g, i, t    ph, f, g, i    g, H    i, M, t    t, Y, x    x, T    x, A    x, Y    ph, x
Allowed substitution hints:    ph( t)    A( t, i)    P( x, t, f, g, i)    F( x, t, i)    G( x)    H( x, t, f, i)    M( x, f, g)    Y( f, g, i)

Proof of Theorem stoweidlem32
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 stoweidlem32.2 . . 3  |-  P  =  ( t  e.  T  |->  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
2 stoweidlem32.1 . . . 4  |-  F/ t
ph
3 stoweidlem32.3 . . . . . . . . . . 11  |-  F  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
4 fveq2 6191 . . . . . . . . . . . . 13  |-  ( t  =  s  ->  (
( G `  i
) `  t )  =  ( ( G `
 i ) `  s ) )
54sumeq2sdv 14435 . . . . . . . . . . . 12  |-  ( t  =  s  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  s )
)
65cbvmptv 4750 . . . . . . . . . . 11  |-  ( t  e.  T  |->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) )  =  ( s  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  s
) )
73, 6eqtri 2644 . . . . . . . . . 10  |-  F  =  ( s  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  s
) )
87a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  F  =  ( s  e.  T  |->  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  s
) ) )
9 fveq2 6191 . . . . . . . . . . 11  |-  ( s  =  t  ->  (
( G `  i
) `  s )  =  ( ( G `
 i ) `  t ) )
109sumeq2sdv 14435 . . . . . . . . . 10  |-  ( s  =  t  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  s )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
)
1110adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  T )  /\  s  =  t )  ->  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  s )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
12 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
13 fzfid 12772 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  (
1 ... M )  e. 
Fin )
14 simpl 473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ph )
15 stoweidlem32.7 . . . . . . . . . . . . . 14  |-  ( ph  ->  G : ( 1 ... M ) --> A )
1615ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i )  e.  A )
17 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( G `  i )  ->  (
f  e.  A  <->  ( G `  i )  e.  A
) )
1817anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( G `  i )  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  ( G `  i
)  e.  A ) ) )
19 feq1 6026 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( G `  i )  ->  (
f : T --> RR  <->  ( G `  i ) : T --> RR ) )
2018, 19imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( f  =  ( G `  i )  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  ( G `  i )  e.  A )  -> 
( G `  i
) : T --> RR ) ) )
21 stoweidlem32.11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
2220, 21vtoclg 3266 . . . . . . . . . . . . . 14  |-  ( ( G `  i )  e.  A  ->  (
( ph  /\  ( G `  i )  e.  A )  ->  ( G `  i ) : T --> RR ) )
2316, 22syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( ph  /\  ( G `  i )  e.  A )  ->  ( G `  i ) : T --> RR ) )
2414, 16, 23mp2and 715 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i ) : T --> RR )
2524adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i ) : T --> RR )
26 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  t  e.  T )
2725, 26ffvelrnd 6360 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  t )  e.  RR )
2813, 27fsumrecl 14465 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t )  e.  RR )
298, 11, 12, 28fvmptd 6288 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
3029, 28eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
3130recnd 10068 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  CC )
32 stoweidlem32.4 . . . . . . . . . . 11  |-  H  =  ( t  e.  T  |->  Y )
33 eqidd 2623 . . . . . . . . . . . 12  |-  ( s  =  t  ->  Y  =  Y )
3433cbvmptv 4750 . . . . . . . . . . 11  |-  ( s  e.  T  |->  Y )  =  ( t  e.  T  |->  Y )
3532, 34eqtr4i 2647 . . . . . . . . . 10  |-  H  =  ( s  e.  T  |->  Y )
3635a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  H  =  ( s  e.  T  |->  Y ) )
37 eqidd 2623 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  T )  /\  s  =  t )  ->  Y  =  Y )
38 stoweidlem32.6 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  RR )
3938adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  Y  e.  RR )
4036, 37, 12, 39fvmptd 6288 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  =  Y )
4140, 39eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  e.  RR )
4241recnd 10068 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  e.  CC )
4331, 42mulcomd 10061 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
( F `  t
)  x.  ( H `
 t ) )  =  ( ( H `
 t )  x.  ( F `  t
) ) )
4440, 29oveq12d 6668 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
( H `  t
)  x.  ( F `
 t ) )  =  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
4543, 44eqtr2d 2657 . . . 4  |-  ( (
ph  /\  t  e.  T )  ->  ( Y  x.  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) )  =  ( ( F `  t )  x.  ( H `  t )
) )
462, 45mpteq2da 4743 . . 3  |-  ( ph  ->  ( t  e.  T  |->  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )  =  ( t  e.  T  |->  ( ( F `  t
)  x.  ( H `
 t ) ) ) )
471, 46syl5eq 2668 . 2  |-  ( ph  ->  P  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( H `  t ) ) ) )
48 stoweidlem32.5 . . . 4  |-  ( ph  ->  M  e.  NN )
49 stoweidlem32.8 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
502, 3, 48, 15, 49, 21stoweidlem20 40237 . . 3  |-  ( ph  ->  F  e.  A )
51 stoweidlem32.10 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
5251stoweidlem4 40221 . . . . 5  |-  ( (
ph  /\  Y  e.  RR )  ->  ( t  e.  T  |->  Y )  e.  A )
5338, 52mpdan 702 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  Y )  e.  A
)
5432, 53syl5eqel 2705 . . 3  |-  ( ph  ->  H  e.  A )
55 nfmpt1 4747 . . . . . 6  |-  F/_ t
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
563, 55nfcxfr 2762 . . . . 5  |-  F/_ t F
5756nfeq2 2780 . . . 4  |-  F/ t  f  =  F
58 nfmpt1 4747 . . . . . 6  |-  F/_ t
( t  e.  T  |->  Y )
5932, 58nfcxfr 2762 . . . . 5  |-  F/_ t H
6059nfeq2 2780 . . . 4  |-  F/ t  g  =  H
61 stoweidlem32.9 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
6257, 60, 61stoweidlem6 40223 . . 3  |-  ( (
ph  /\  F  e.  A  /\  H  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( H `  t ) ) )  e.  A )
6350, 54, 62mpd3an23 1426 . 2  |-  ( ph  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( H `  t )
) )  e.  A
)
6447, 63eqeltrd 2701 1  |-  ( ph  ->  P  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   ...cfz 12326   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  stoweidlem44  40261
  Copyright terms: Public domain W3C validator