MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem2 Structured version   Visualization version   Unicode version

Theorem log2ublem2 24674
Description: Lemma for log2ub 24676. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem2.1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  sum_ n  e.  ( 0 ... K ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  <_  (
2  x.  B )
log2ublem2.2  |-  B  e. 
NN0
log2ublem2.3  |-  F  e. 
NN0
log2ublem2.4  |-  N  e. 
NN0
log2ublem2.5  |-  ( N  -  1 )  =  K
log2ublem2.6  |-  ( B  +  F )  =  G
log2ublem2.7  |-  M  e. 
NN0
log2ublem2.8  |-  ( M  +  N )  =  3
log2ublem2.9  |-  ( ( 5  x.  7 )  x.  ( 9 ^ M ) )  =  ( ( ( 2  x.  N )  +  1 )  x.  F
)
Assertion
Ref Expression
log2ublem2  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  sum_ n  e.  ( 0 ... N ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  <_  (
2  x.  G )
Distinct variable groups:    n, K    n, N
Allowed substitution hints:    B( n)    F( n)    G( n)    M( n)

Proof of Theorem log2ublem2
StepHypRef Expression
1 log2ublem2.1 . 2  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  sum_ n  e.  ( 0 ... K ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  <_  (
2  x.  B )
2 fzfid 12772 . . . 4  |-  ( T. 
->  ( 0 ... K
)  e.  Fin )
3 elfznn0 12433 . . . . . 6  |-  ( n  e.  ( 0 ... K )  ->  n  e.  NN0 )
43adantl 482 . . . . 5  |-  ( ( T.  /\  n  e.  ( 0 ... K
) )  ->  n  e.  NN0 )
5 2re 11090 . . . . . 6  |-  2  e.  RR
6 3nn 11186 . . . . . . . 8  |-  3  e.  NN
7 2nn0 11309 . . . . . . . . . 10  |-  2  e.  NN0
8 nn0mulcl 11329 . . . . . . . . . 10  |-  ( ( 2  e.  NN0  /\  n  e.  NN0 )  -> 
( 2  x.  n
)  e.  NN0 )
97, 8mpan 706 . . . . . . . . 9  |-  ( n  e.  NN0  ->  ( 2  x.  n )  e. 
NN0 )
10 nn0p1nn 11332 . . . . . . . . 9  |-  ( ( 2  x.  n )  e.  NN0  ->  ( ( 2  x.  n )  +  1 )  e.  NN )
119, 10syl 17 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( ( 2  x.  n )  +  1 )  e.  NN )
12 nnmulcl 11043 . . . . . . . 8  |-  ( ( 3  e.  NN  /\  ( ( 2  x.  n )  +  1 )  e.  NN )  ->  ( 3  x.  ( ( 2  x.  n )  +  1 ) )  e.  NN )
136, 11, 12sylancr 695 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 3  x.  ( ( 2  x.  n )  +  1 ) )  e.  NN )
14 9nn 11192 . . . . . . . 8  |-  9  e.  NN
15 nnexpcl 12873 . . . . . . . 8  |-  ( ( 9  e.  NN  /\  n  e.  NN0 )  -> 
( 9 ^ n
)  e.  NN )
1614, 15mpan 706 . . . . . . 7  |-  ( n  e.  NN0  ->  ( 9 ^ n )  e.  NN )
1713, 16nnmulcld 11068 . . . . . 6  |-  ( n  e.  NN0  ->  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) )  e.  NN )
18 nndivre 11056 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) )  e.  NN )  ->  ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  e.  RR )
195, 17, 18sylancr 695 . . . . 5  |-  ( n  e.  NN0  ->  ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )  e.  RR )
204, 19syl 17 . . . 4  |-  ( ( T.  /\  n  e.  ( 0 ... K
) )  ->  (
2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  RR )
212, 20fsumrecl 14465 . . 3  |-  ( T. 
->  sum_ n  e.  ( 0 ... K ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  RR )
2221trud 1493 . 2  |-  sum_ n  e.  ( 0 ... K
) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  e.  RR
23 log2ublem2.4 . . . . . 6  |-  N  e. 
NN0
247, 23nn0mulcli 11331 . . . . 5  |-  ( 2  x.  N )  e. 
NN0
25 nn0p1nn 11332 . . . . 5  |-  ( ( 2  x.  N )  e.  NN0  ->  ( ( 2  x.  N )  +  1 )  e.  NN )
2624, 25ax-mp 5 . . . 4  |-  ( ( 2  x.  N )  +  1 )  e.  NN
276, 26nnmulcli 11044 . . 3  |-  ( 3  x.  ( ( 2  x.  N )  +  1 ) )  e.  NN
28 nnexpcl 12873 . . . 4  |-  ( ( 9  e.  NN  /\  N  e.  NN0 )  -> 
( 9 ^ N
)  e.  NN )
2914, 23, 28mp2an 708 . . 3  |-  ( 9 ^ N )  e.  NN
3027, 29nnmulcli 11044 . 2  |-  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N ) )  e.  NN
31 log2ublem2.2 . . 3  |-  B  e. 
NN0
327, 31nn0mulcli 11331 . 2  |-  ( 2  x.  B )  e. 
NN0
33 log2ublem2.3 . . 3  |-  F  e. 
NN0
347, 33nn0mulcli 11331 . 2  |-  ( 2  x.  F )  e. 
NN0
35 nn0uz 11722 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
3623, 35eleqtri 2699 . . . . . 6  |-  N  e.  ( ZZ>= `  0 )
3736a1i 11 . . . . 5  |-  ( T. 
->  N  e.  ( ZZ>=
`  0 ) )
38 elfznn0 12433 . . . . . . 7  |-  ( n  e.  ( 0 ... N )  ->  n  e.  NN0 )
3938adantl 482 . . . . . 6  |-  ( ( T.  /\  n  e.  ( 0 ... N
) )  ->  n  e.  NN0 )
4019recnd 10068 . . . . . 6  |-  ( n  e.  NN0  ->  ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )  e.  CC )
4139, 40syl 17 . . . . 5  |-  ( ( T.  /\  n  e.  ( 0 ... N
) )  ->  (
2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  e.  CC )
42 oveq2 6658 . . . . . . . . 9  |-  ( n  =  N  ->  (
2  x.  n )  =  ( 2  x.  N ) )
4342oveq1d 6665 . . . . . . . 8  |-  ( n  =  N  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  N )  +  1 ) )
4443oveq2d 6666 . . . . . . 7  |-  ( n  =  N  ->  (
3  x.  ( ( 2  x.  n )  +  1 ) )  =  ( 3  x.  ( ( 2  x.  N )  +  1 ) ) )
45 oveq2 6658 . . . . . . 7  |-  ( n  =  N  ->  (
9 ^ n )  =  ( 9 ^ N ) )
4644, 45oveq12d 6668 . . . . . 6  |-  ( n  =  N  ->  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) )  =  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) ) )
4746oveq2d 6666 . . . . 5  |-  ( n  =  N  ->  (
2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  =  ( 2  / 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) )
4837, 41, 47fsumm1 14480 . . . 4  |-  ( T. 
->  sum_ n  e.  ( 0 ... N ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) )  =  ( sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )  +  ( 2  /  (
( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) ) ) ) )
4948trud 1493 . . 3  |-  sum_ n  e.  ( 0 ... N
) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  =  (
sum_ n  e.  (
0 ... ( N  - 
1 ) ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  +  ( 2  / 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) )
50 log2ublem2.5 . . . . . 6  |-  ( N  -  1 )  =  K
5150oveq2i 6661 . . . . 5  |-  ( 0 ... ( N  - 
1 ) )  =  ( 0 ... K
)
5251sumeq1i 14428 . . . 4  |-  sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  =  sum_ n  e.  ( 0 ... K ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )
5352oveq1i 6660 . . 3  |-  ( sum_ n  e.  ( 0 ... ( N  -  1 ) ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n
) ) )  +  ( 2  /  (
( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) ) ) )  =  (
sum_ n  e.  (
0 ... K ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  +  ( 2  / 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) )
5449, 53eqtri 2644 . 2  |-  sum_ n  e.  ( 0 ... N
) ( 2  / 
( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  (
9 ^ n ) ) )  =  (
sum_ n  e.  (
0 ... K ) ( 2  /  ( ( 3  x.  ( ( 2  x.  n )  +  1 ) )  x.  ( 9 ^ n ) ) )  +  ( 2  / 
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) ) ) )
55 2cn 11091 . . . 4  |-  2  e.  CC
5631nn0cni 11304 . . . 4  |-  B  e.  CC
5733nn0cni 11304 . . . 4  |-  F  e.  CC
5855, 56, 57adddii 10050 . . 3  |-  ( 2  x.  ( B  +  F ) )  =  ( ( 2  x.  B )  +  ( 2  x.  F ) )
59 log2ublem2.6 . . . 4  |-  ( B  +  F )  =  G
6059oveq2i 6661 . . 3  |-  ( 2  x.  ( B  +  F ) )  =  ( 2  x.  G
)
6158, 60eqtr3i 2646 . 2  |-  ( ( 2  x.  B )  +  ( 2  x.  F ) )  =  ( 2  x.  G
)
62 7nn 11190 . . . . . . . . 9  |-  7  e.  NN
6362nnnn0i 11300 . . . . . . . 8  |-  7  e.  NN0
64 nnexpcl 12873 . . . . . . . 8  |-  ( ( 3  e.  NN  /\  7  e.  NN0 )  -> 
( 3 ^ 7 )  e.  NN )
656, 63, 64mp2an 708 . . . . . . 7  |-  ( 3 ^ 7 )  e.  NN
66 5nn 11188 . . . . . . . 8  |-  5  e.  NN
6766, 62nnmulcli 11044 . . . . . . 7  |-  ( 5  x.  7 )  e.  NN
6865, 67nnmulcli 11044 . . . . . 6  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  NN
6968nnrei 11029 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  RR
7069, 5remulcli 10054 . . . 4  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )  e.  RR
7170leidi 10562 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )  <_ 
( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )
726nnnn0i 11300 . . . . . . . . . . . 12  |-  3  e.  NN0
73 nnexpcl 12873 . . . . . . . . . . . 12  |-  ( ( 9  e.  NN  /\  3  e.  NN0 )  -> 
( 9 ^ 3 )  e.  NN )
7414, 72, 73mp2an 708 . . . . . . . . . . 11  |-  ( 9 ^ 3 )  e.  NN
7574nncni 11030 . . . . . . . . . 10  |-  ( 9 ^ 3 )  e.  CC
7667nncni 11030 . . . . . . . . . 10  |-  ( 5  x.  7 )  e.  CC
7775, 76mulcomi 10046 . . . . . . . . 9  |-  ( ( 9 ^ 3 )  x.  ( 5  x.  7 ) )  =  ( ( 5  x.  7 )  x.  (
9 ^ 3 ) )
78 log2ublem2.8 . . . . . . . . . . . . 13  |-  ( M  +  N )  =  3
79 log2ublem2.7 . . . . . . . . . . . . . . 15  |-  M  e. 
NN0
8079nn0cni 11304 . . . . . . . . . . . . . 14  |-  M  e.  CC
8123nn0cni 11304 . . . . . . . . . . . . . 14  |-  N  e.  CC
8280, 81addcomi 10227 . . . . . . . . . . . . 13  |-  ( M  +  N )  =  ( N  +  M
)
8378, 82eqtr3i 2646 . . . . . . . . . . . 12  |-  3  =  ( N  +  M )
8483oveq2i 6661 . . . . . . . . . . 11  |-  ( 9 ^ 3 )  =  ( 9 ^ ( N  +  M )
)
8514nncni 11030 . . . . . . . . . . . 12  |-  9  e.  CC
86 expadd 12902 . . . . . . . . . . . 12  |-  ( ( 9  e.  CC  /\  N  e.  NN0  /\  M  e.  NN0 )  ->  (
9 ^ ( N  +  M ) )  =  ( ( 9 ^ N )  x.  ( 9 ^ M
) ) )
8785, 23, 79, 86mp3an 1424 . . . . . . . . . . 11  |-  ( 9 ^ ( N  +  M ) )  =  ( ( 9 ^ N )  x.  (
9 ^ M ) )
8884, 87eqtri 2644 . . . . . . . . . 10  |-  ( 9 ^ 3 )  =  ( ( 9 ^ N )  x.  (
9 ^ M ) )
8988oveq2i 6661 . . . . . . . . 9  |-  ( ( 5  x.  7 )  x.  ( 9 ^ 3 ) )  =  ( ( 5  x.  7 )  x.  (
( 9 ^ N
)  x.  ( 9 ^ M ) ) )
9029nncni 11030 . . . . . . . . . 10  |-  ( 9 ^ N )  e.  CC
91 nnexpcl 12873 . . . . . . . . . . . 12  |-  ( ( 9  e.  NN  /\  M  e.  NN0 )  -> 
( 9 ^ M
)  e.  NN )
9214, 79, 91mp2an 708 . . . . . . . . . . 11  |-  ( 9 ^ M )  e.  NN
9392nncni 11030 . . . . . . . . . 10  |-  ( 9 ^ M )  e.  CC
9476, 90, 93mul12i 10231 . . . . . . . . 9  |-  ( ( 5  x.  7 )  x.  ( ( 9 ^ N )  x.  ( 9 ^ M
) ) )  =  ( ( 9 ^ N )  x.  (
( 5  x.  7 )  x.  ( 9 ^ M ) ) )
9577, 89, 943eqtri 2648 . . . . . . . 8  |-  ( ( 9 ^ 3 )  x.  ( 5  x.  7 ) )  =  ( ( 9 ^ N )  x.  (
( 5  x.  7 )  x.  ( 9 ^ M ) ) )
96 log2ublem2.9 . . . . . . . . 9  |-  ( ( 5  x.  7 )  x.  ( 9 ^ M ) )  =  ( ( ( 2  x.  N )  +  1 )  x.  F
)
9796oveq2i 6661 . . . . . . . 8  |-  ( ( 9 ^ N )  x.  ( ( 5  x.  7 )  x.  ( 9 ^ M
) ) )  =  ( ( 9 ^ N )  x.  (
( ( 2  x.  N )  +  1 )  x.  F ) )
9895, 97eqtri 2644 . . . . . . 7  |-  ( ( 9 ^ 3 )  x.  ( 5  x.  7 ) )  =  ( ( 9 ^ N )  x.  (
( ( 2  x.  N )  +  1 )  x.  F ) )
9998oveq2i 6661 . . . . . 6  |-  ( 3  x.  ( ( 9 ^ 3 )  x.  ( 5  x.  7 ) ) )  =  ( 3  x.  (
( 9 ^ N
)  x.  ( ( ( 2  x.  N
)  +  1 )  x.  F ) ) )
100 df-7 11084 . . . . . . . . . 10  |-  7  =  ( 6  +  1 )
101100oveq2i 6661 . . . . . . . . 9  |-  ( 3 ^ 7 )  =  ( 3 ^ (
6  +  1 ) )
102 3cn 11095 . . . . . . . . . . 11  |-  3  e.  CC
103 6nn0 11313 . . . . . . . . . . 11  |-  6  e.  NN0
104 expp1 12867 . . . . . . . . . . 11  |-  ( ( 3  e.  CC  /\  6  e.  NN0 )  -> 
( 3 ^ (
6  +  1 ) )  =  ( ( 3 ^ 6 )  x.  3 ) )
105102, 103, 104mp2an 708 . . . . . . . . . 10  |-  ( 3 ^ ( 6  +  1 ) )  =  ( ( 3 ^ 6 )  x.  3 )
106 expmul 12905 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  2  e.  NN0  /\  3  e.  NN0 )  ->  (
3 ^ ( 2  x.  3 ) )  =  ( ( 3 ^ 2 ) ^
3 ) )
107102, 7, 72, 106mp3an 1424 . . . . . . . . . . . 12  |-  ( 3 ^ ( 2  x.  3 ) )  =  ( ( 3 ^ 2 ) ^ 3 )
10855, 102mulcomi 10046 . . . . . . . . . . . . . 14  |-  ( 2  x.  3 )  =  ( 3  x.  2 )
109 3t2e6 11179 . . . . . . . . . . . . . 14  |-  ( 3  x.  2 )  =  6
110108, 109eqtri 2644 . . . . . . . . . . . . 13  |-  ( 2  x.  3 )  =  6
111110oveq2i 6661 . . . . . . . . . . . 12  |-  ( 3 ^ ( 2  x.  3 ) )  =  ( 3 ^ 6 )
112 sq3 12961 . . . . . . . . . . . . 13  |-  ( 3 ^ 2 )  =  9
113112oveq1i 6660 . . . . . . . . . . . 12  |-  ( ( 3 ^ 2 ) ^ 3 )  =  ( 9 ^ 3 )
114107, 111, 1133eqtr3i 2652 . . . . . . . . . . 11  |-  ( 3 ^ 6 )  =  ( 9 ^ 3 )
115114oveq1i 6660 . . . . . . . . . 10  |-  ( ( 3 ^ 6 )  x.  3 )  =  ( ( 9 ^ 3 )  x.  3 )
116105, 115eqtri 2644 . . . . . . . . 9  |-  ( 3 ^ ( 6  +  1 ) )  =  ( ( 9 ^ 3 )  x.  3 )
11775, 102mulcomi 10046 . . . . . . . . 9  |-  ( ( 9 ^ 3 )  x.  3 )  =  ( 3  x.  (
9 ^ 3 ) )
118101, 116, 1173eqtri 2648 . . . . . . . 8  |-  ( 3 ^ 7 )  =  ( 3  x.  (
9 ^ 3 ) )
119118oveq1i 6660 . . . . . . 7  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  =  ( ( 3  x.  ( 9 ^ 3 ) )  x.  (
5  x.  7 ) )
120102, 75, 76mulassi 10049 . . . . . . 7  |-  ( ( 3  x.  ( 9 ^ 3 ) )  x.  ( 5  x.  7 ) )  =  ( 3  x.  (
( 9 ^ 3 )  x.  ( 5  x.  7 ) ) )
121119, 120eqtri 2644 . . . . . 6  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  =  ( 3  x.  (
( 9 ^ 3 )  x.  ( 5  x.  7 ) ) )
12226nncni 11030 . . . . . . . . 9  |-  ( ( 2  x.  N )  +  1 )  e.  CC
123102, 122, 90mul32i 10232 . . . . . . . 8  |-  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N ) )  =  ( ( 3  x.  ( 9 ^ N
) )  x.  (
( 2  x.  N
)  +  1 ) )
124123oveq1i 6660 . . . . . . 7  |-  ( ( ( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) )  x.  F )  =  ( ( ( 3  x.  ( 9 ^ N ) )  x.  ( ( 2  x.  N )  +  1 ) )  x.  F
)
125102, 90mulcli 10045 . . . . . . . 8  |-  ( 3  x.  ( 9 ^ N ) )  e.  CC
126125, 122, 57mulassi 10049 . . . . . . 7  |-  ( ( ( 3  x.  (
9 ^ N ) )  x.  ( ( 2  x.  N )  +  1 ) )  x.  F )  =  ( ( 3  x.  ( 9 ^ N
) )  x.  (
( ( 2  x.  N )  +  1 )  x.  F ) )
127122, 57mulcli 10045 . . . . . . . 8  |-  ( ( ( 2  x.  N
)  +  1 )  x.  F )  e.  CC
128102, 90, 127mulassi 10049 . . . . . . 7  |-  ( ( 3  x.  ( 9 ^ N ) )  x.  ( ( ( 2  x.  N )  +  1 )  x.  F ) )  =  ( 3  x.  (
( 9 ^ N
)  x.  ( ( ( 2  x.  N
)  +  1 )  x.  F ) ) )
129124, 126, 1283eqtri 2648 . . . . . 6  |-  ( ( ( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) )  x.  F )  =  ( 3  x.  (
( 9 ^ N
)  x.  ( ( ( 2  x.  N
)  +  1 )  x.  F ) ) )
13099, 121, 1293eqtr4i 2654 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  =  ( ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) )  x.  F
)
131130oveq2i 6661 . . . 4  |-  ( 2  x.  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) ) )  =  ( 2  x.  (
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) )  x.  F ) )
13265nncni 11030 . . . . . 6  |-  ( 3 ^ 7 )  e.  CC
133132, 76mulcli 10045 . . . . 5  |-  ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  e.  CC
134133, 55mulcomi 10046 . . . 4  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )  =  ( 2  x.  (
( 3 ^ 7 )  x.  ( 5  x.  7 ) ) )
13530nncni 11030 . . . . 5  |-  ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N ) )  e.  CC
136135, 55, 57mul12i 10231 . . . 4  |-  ( ( ( 3  x.  (
( 2  x.  N
)  +  1 ) )  x.  ( 9 ^ N ) )  x.  ( 2  x.  F ) )  =  ( 2  x.  (
( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  (
9 ^ N ) )  x.  F ) )
137131, 134, 1363eqtr4i 2654 . . 3  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )  =  ( ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) )  x.  (
2  x.  F ) )
13871, 137breqtri 4678 . 2  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  2 )  <_ 
( ( ( 3  x.  ( ( 2  x.  N )  +  1 ) )  x.  ( 9 ^ N
) )  x.  (
2  x.  F ) )
1391, 22, 7, 30, 32, 34, 54, 61, 138log2ublem1 24673 1  |-  ( ( ( 3 ^ 7 )  x.  ( 5  x.  7 ) )  x.  sum_ n  e.  ( 0 ... N ) ( 2  /  (
( 3  x.  (
( 2  x.  n
)  +  1 ) )  x.  ( 9 ^ n ) ) ) )  <_  (
2  x.  G )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   5c5 11073   6c6 11074   7c7 11075   9c9 11077   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  log2ublem3  24675
  Copyright terms: Public domain W3C validator