MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0gsumle Structured version   Visualization version   Unicode version

Theorem xrge0gsumle 22636
Description: A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
xrge0gsumle.g  |-  G  =  ( RR*ss  ( 0 [,] +oo ) )
xrge0gsumle.a  |-  ( ph  ->  A  e.  V )
xrge0gsumle.f  |-  ( ph  ->  F : A --> ( 0 [,] +oo ) )
xrge0gsumle.b  |-  ( ph  ->  B  e.  ( ~P A  i^i  Fin )
)
xrge0gsumle.c  |-  ( ph  ->  C  C_  B )
Assertion
Ref Expression
xrge0gsumle  |-  ( ph  ->  ( G  gsumg  ( F  |`  C ) )  <_  ( G  gsumg  ( F  |`  B )
) )

Proof of Theorem xrge0gsumle
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12256 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
2 xrge0gsumle.g . . . . . . . . . 10  |-  G  =  ( RR*ss  ( 0 [,] +oo ) )
3 xrsbas 19762 . . . . . . . . . 10  |-  RR*  =  ( Base `  RR*s )
42, 3ressbas2 15931 . . . . . . . . 9  |-  ( ( 0 [,] +oo )  C_ 
RR*  ->  ( 0 [,] +oo )  =  ( Base `  G ) )
51, 4ax-mp 5 . . . . . . . 8  |-  ( 0 [,] +oo )  =  ( Base `  G
)
6 eqid 2622 . . . . . . . . . 10  |-  ( RR*ss  ( RR*  \  { -oo } ) )  =  (
RR*ss  ( RR*  \  { -oo } ) )
76xrge0subm 19787 . . . . . . . . 9  |-  ( 0 [,] +oo )  e.  (SubMnd `  ( RR*ss  ( RR*  \  { -oo } ) ) )
8 xrex 11829 . . . . . . . . . . . . 13  |-  RR*  e.  _V
9 difexg 4808 . . . . . . . . . . . . 13  |-  ( RR*  e.  _V  ->  ( RR*  \  { -oo } )  e.  _V )
108, 9ax-mp 5 . . . . . . . . . . . 12  |-  ( RR*  \  { -oo } )  e.  _V
11 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  0  <_  x )  ->  x  e.  RR* )
12 ge0nemnf 12004 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  0  <_  x )  ->  x  =/= -oo )
1311, 12jca 554 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR*  /\  0  <_  x )  ->  (
x  e.  RR*  /\  x  =/= -oo ) )
14 elxrge0 12281 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 0 [,] +oo )  <->  ( x  e. 
RR*  /\  0  <_  x ) )
15 eldifsn 4317 . . . . . . . . . . . . . 14  |-  ( x  e.  ( RR*  \  { -oo } )  <->  ( x  e.  RR*  /\  x  =/= -oo ) )
1613, 14, 153imtr4i 281 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0 [,] +oo )  ->  x  e.  ( RR*  \  { -oo } ) )
1716ssriv 3607 . . . . . . . . . . . 12  |-  ( 0 [,] +oo )  C_  ( RR*  \  { -oo } )
18 ressabs 15939 . . . . . . . . . . . 12  |-  ( ( ( RR*  \  { -oo } )  e.  _V  /\  ( 0 [,] +oo )  C_  ( RR*  \  { -oo } ) )  -> 
( ( RR*ss  ( RR*  \  { -oo }
) )s  ( 0 [,] +oo ) )  =  (
RR*ss  ( 0 [,] +oo ) ) )
1910, 17, 18mp2an 708 . . . . . . . . . . 11  |-  ( (
RR*ss  ( RR*  \  { -oo } ) )s  ( 0 [,] +oo ) )  =  ( RR*ss  (
0 [,] +oo )
)
202, 19eqtr4i 2647 . . . . . . . . . 10  |-  G  =  ( ( RR*ss  ( RR*  \  { -oo }
) )s  ( 0 [,] +oo ) )
216xrs10 19785 . . . . . . . . . 10  |-  0  =  ( 0g `  ( RR*ss  ( RR*  \  { -oo } ) ) )
2220, 21subm0 17356 . . . . . . . . 9  |-  ( ( 0 [,] +oo )  e.  (SubMnd `  ( RR*ss  ( RR*  \  { -oo } ) ) )  -> 
0  =  ( 0g
`  G ) )
237, 22ax-mp 5 . . . . . . . 8  |-  0  =  ( 0g `  G )
24 xrge0cmn 19788 . . . . . . . . . 10  |-  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd
252, 24eqeltri 2697 . . . . . . . . 9  |-  G  e. CMnd
2625a1i 11 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  G  e. CMnd )
27 elfpw 8268 . . . . . . . . . 10  |-  ( s  e.  ( ~P A  i^i  Fin )  <->  ( s  C_  A  /\  s  e. 
Fin ) )
2827simprbi 480 . . . . . . . . 9  |-  ( s  e.  ( ~P A  i^i  Fin )  ->  s  e.  Fin )
2928adantl 482 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  s  e.  Fin )
30 xrge0gsumle.f . . . . . . . . 9  |-  ( ph  ->  F : A --> ( 0 [,] +oo ) )
3127simplbi 476 . . . . . . . . 9  |-  ( s  e.  ( ~P A  i^i  Fin )  ->  s  C_  A )
32 fssres 6070 . . . . . . . . 9  |-  ( ( F : A --> ( 0 [,] +oo )  /\  s  C_  A )  -> 
( F  |`  s
) : s --> ( 0 [,] +oo )
)
3330, 31, 32syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  s ) : s --> ( 0 [,] +oo ) )
34 c0ex 10034 . . . . . . . . . 10  |-  0  e.  _V
3534a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  0  e.  _V )
3633, 29, 35fdmfifsupp 8285 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  s ) finSupp  0
)
375, 23, 26, 29, 33, 36gsumcl 18316 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  s
) )  e.  ( 0 [,] +oo )
)
381, 37sseldi 3601 . . . . . 6  |-  ( (
ph  /\  s  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  s
) )  e.  RR* )
39 eqid 2622 . . . . . 6  |-  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) )  =  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) )
4038, 39fmptd 6385 . . . . 5  |-  ( ph  ->  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) : ( ~P A  i^i  Fin ) --> RR* )
41 frn 6053 . . . . 5  |-  ( ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) : ( ~P A  i^i  Fin ) --> RR*  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G 
gsumg  ( F  |`  s ) ) )  C_  RR* )
4240, 41syl 17 . . . 4  |-  ( ph  ->  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) ) 
C_  RR* )
43 0ss 3972 . . . . . . 7  |-  (/)  C_  A
44 0fin 8188 . . . . . . 7  |-  (/)  e.  Fin
45 elfpw 8268 . . . . . . 7  |-  ( (/)  e.  ( ~P A  i^i  Fin )  <->  ( (/)  C_  A  /\  (/)  e.  Fin )
)
4643, 44, 45mpbir2an 955 . . . . . 6  |-  (/)  e.  ( ~P A  i^i  Fin )
47 0cn 10032 . . . . . 6  |-  0  e.  CC
48 reseq2 5391 . . . . . . . . . 10  |-  ( s  =  (/)  ->  ( F  |`  s )  =  ( F  |`  (/) ) )
49 res0 5400 . . . . . . . . . 10  |-  ( F  |`  (/) )  =  (/)
5048, 49syl6eq 2672 . . . . . . . . 9  |-  ( s  =  (/)  ->  ( F  |`  s )  =  (/) )
5150oveq2d 6666 . . . . . . . 8  |-  ( s  =  (/)  ->  ( G 
gsumg  ( F  |`  s ) )  =  ( G 
gsumg  (/) ) )
5223gsum0 17278 . . . . . . . 8  |-  ( G 
gsumg  (/) )  =  0
5351, 52syl6eq 2672 . . . . . . 7  |-  ( s  =  (/)  ->  ( G 
gsumg  ( F  |`  s ) )  =  0 )
5439, 53elrnmpt1s 5373 . . . . . 6  |-  ( (
(/)  e.  ( ~P A  i^i  Fin )  /\  0  e.  CC )  ->  0  e.  ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) )
5546, 47, 54mp2an 708 . . . . 5  |-  0  e.  ran  ( s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s ) ) )
5655a1i 11 . . . 4  |-  ( ph  ->  0  e.  ran  (
s  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  s
) ) ) )
5742, 56sseldd 3604 . . 3  |-  ( ph  ->  0  e.  RR* )
5825a1i 11 . . . . 5  |-  ( ph  ->  G  e. CMnd )
59 xrge0gsumle.b . . . . . . 7  |-  ( ph  ->  B  e.  ( ~P A  i^i  Fin )
)
60 elfpw 8268 . . . . . . . 8  |-  ( B  e.  ( ~P A  i^i  Fin )  <->  ( B  C_  A  /\  B  e. 
Fin ) )
6160simprbi 480 . . . . . . 7  |-  ( B  e.  ( ~P A  i^i  Fin )  ->  B  e.  Fin )
6259, 61syl 17 . . . . . 6  |-  ( ph  ->  B  e.  Fin )
63 diffi 8192 . . . . . 6  |-  ( B  e.  Fin  ->  ( B  \  C )  e. 
Fin )
6462, 63syl 17 . . . . 5  |-  ( ph  ->  ( B  \  C
)  e.  Fin )
6560simplbi 476 . . . . . . . 8  |-  ( B  e.  ( ~P A  i^i  Fin )  ->  B  C_  A )
6659, 65syl 17 . . . . . . 7  |-  ( ph  ->  B  C_  A )
6766ssdifssd 3748 . . . . . 6  |-  ( ph  ->  ( B  \  C
)  C_  A )
6830, 67fssresd 6071 . . . . 5  |-  ( ph  ->  ( F  |`  ( B  \  C ) ) : ( B  \  C ) --> ( 0 [,] +oo ) )
6934a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  _V )
7068, 64, 69fdmfifsupp 8285 . . . . 5  |-  ( ph  ->  ( F  |`  ( B  \  C ) ) finSupp 
0 )
715, 23, 58, 64, 68, 70gsumcl 18316 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( B  \  C ) ) )  e.  ( 0 [,] +oo ) )
721, 71sseldi 3601 . . 3  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( B  \  C ) ) )  e.  RR* )
73 xrge0gsumle.c . . . . . 6  |-  ( ph  ->  C  C_  B )
74 ssfi 8180 . . . . . 6  |-  ( ( B  e.  Fin  /\  C  C_  B )  ->  C  e.  Fin )
7562, 73, 74syl2anc 693 . . . . 5  |-  ( ph  ->  C  e.  Fin )
7673, 66sstrd 3613 . . . . . 6  |-  ( ph  ->  C  C_  A )
7730, 76fssresd 6071 . . . . 5  |-  ( ph  ->  ( F  |`  C ) : C --> ( 0 [,] +oo ) )
7877, 75, 69fdmfifsupp 8285 . . . . 5  |-  ( ph  ->  ( F  |`  C ) finSupp 
0 )
795, 23, 58, 75, 77, 78gsumcl 18316 . . . 4  |-  ( ph  ->  ( G  gsumg  ( F  |`  C ) )  e.  ( 0 [,] +oo ) )
801, 79sseldi 3601 . . 3  |-  ( ph  ->  ( G  gsumg  ( F  |`  C ) )  e.  RR* )
81 elxrge0 12281 . . . . 5  |-  ( ( G  gsumg  ( F  |`  ( B  \  C ) ) )  e.  ( 0 [,] +oo )  <->  ( ( G  gsumg  ( F  |`  ( B  \  C ) ) )  e.  RR*  /\  0  <_  ( G  gsumg  ( F  |`  ( B  \  C ) ) ) ) )
8281simprbi 480 . . . 4  |-  ( ( G  gsumg  ( F  |`  ( B  \  C ) ) )  e.  ( 0 [,] +oo )  -> 
0  <_  ( G  gsumg  ( F  |`  ( B  \  C ) ) ) )
8371, 82syl 17 . . 3  |-  ( ph  ->  0  <_  ( G  gsumg  ( F  |`  ( B  \  C ) ) ) )
84 xleadd2a 12084 . . 3  |-  ( ( ( 0  e.  RR*  /\  ( G  gsumg  ( F  |`  ( B  \  C ) ) )  e.  RR*  /\  ( G  gsumg  ( F  |`  C ) )  e.  RR* )  /\  0  <_  ( G 
gsumg  ( F  |`  ( B 
\  C ) ) ) )  ->  (
( G  gsumg  ( F  |`  C ) ) +e 0 )  <_  ( ( G  gsumg  ( F  |`  C ) ) +e ( G  gsumg  ( F  |`  ( B  \  C ) ) ) ) )
8557, 72, 80, 83, 84syl31anc 1329 . 2  |-  ( ph  ->  ( ( G  gsumg  ( F  |`  C ) ) +e 0 )  <_ 
( ( G  gsumg  ( F  |`  C ) ) +e ( G  gsumg  ( F  |`  ( B  \  C
) ) ) ) )
86 xaddid1 12072 . . 3  |-  ( ( G  gsumg  ( F  |`  C ) )  e.  RR*  ->  ( ( G  gsumg  ( F  |`  C ) ) +e 0 )  =  ( G 
gsumg  ( F  |`  C ) ) )
8780, 86syl 17 . 2  |-  ( ph  ->  ( ( G  gsumg  ( F  |`  C ) ) +e 0 )  =  ( G  gsumg  ( F  |`  C ) ) )
88 ovex 6678 . . . . 5  |-  ( 0 [,] +oo )  e. 
_V
89 xrsadd 19763 . . . . . 6  |-  +e 
=  ( +g  `  RR*s
)
902, 89ressplusg 15993 . . . . 5  |-  ( ( 0 [,] +oo )  e.  _V  ->  +e 
=  ( +g  `  G
) )
9188, 90ax-mp 5 . . . 4  |-  +e 
=  ( +g  `  G
)
9230, 66fssresd 6071 . . . 4  |-  ( ph  ->  ( F  |`  B ) : B --> ( 0 [,] +oo ) )
9392, 62, 69fdmfifsupp 8285 . . . 4  |-  ( ph  ->  ( F  |`  B ) finSupp 
0 )
94 disjdif 4040 . . . . 5  |-  ( C  i^i  ( B  \  C ) )  =  (/)
9594a1i 11 . . . 4  |-  ( ph  ->  ( C  i^i  ( B  \  C ) )  =  (/) )
96 undif2 4044 . . . . 5  |-  ( C  u.  ( B  \  C ) )  =  ( C  u.  B
)
97 ssequn1 3783 . . . . . 6  |-  ( C 
C_  B  <->  ( C  u.  B )  =  B )
9873, 97sylib 208 . . . . 5  |-  ( ph  ->  ( C  u.  B
)  =  B )
9996, 98syl5req 2669 . . . 4  |-  ( ph  ->  B  =  ( C  u.  ( B  \  C ) ) )
1005, 23, 91, 58, 59, 92, 93, 95, 99gsumsplit 18328 . . 3  |-  ( ph  ->  ( G  gsumg  ( F  |`  B ) )  =  ( ( G  gsumg  ( ( F  |`  B )  |`  C ) ) +e ( G  gsumg  ( ( F  |`  B )  |`  ( B  \  C ) ) ) ) )
10173resabs1d 5428 . . . . 5  |-  ( ph  ->  ( ( F  |`  B )  |`  C )  =  ( F  |`  C ) )
102101oveq2d 6666 . . . 4  |-  ( ph  ->  ( G  gsumg  ( ( F  |`  B )  |`  C ) )  =  ( G 
gsumg  ( F  |`  C ) ) )
103 difss 3737 . . . . . 6  |-  ( B 
\  C )  C_  B
104 resabs1 5427 . . . . . 6  |-  ( ( B  \  C ) 
C_  B  ->  (
( F  |`  B )  |`  ( B  \  C
) )  =  ( F  |`  ( B  \  C ) ) )
105103, 104mp1i 13 . . . . 5  |-  ( ph  ->  ( ( F  |`  B )  |`  ( B  \  C ) )  =  ( F  |`  ( B  \  C ) ) )
106105oveq2d 6666 . . . 4  |-  ( ph  ->  ( G  gsumg  ( ( F  |`  B )  |`  ( B  \  C ) ) )  =  ( G 
gsumg  ( F  |`  ( B 
\  C ) ) ) )
107102, 106oveq12d 6668 . . 3  |-  ( ph  ->  ( ( G  gsumg  ( ( F  |`  B )  |`  C ) ) +e ( G  gsumg  ( ( F  |`  B )  |`  ( B  \  C
) ) ) )  =  ( ( G 
gsumg  ( F  |`  C ) ) +e ( G  gsumg  ( F  |`  ( B  \  C ) ) ) ) )
108100, 107eqtr2d 2657 . 2  |-  ( ph  ->  ( ( G  gsumg  ( F  |`  C ) ) +e ( G  gsumg  ( F  |`  ( B  \  C
) ) ) )  =  ( G  gsumg  ( F  |`  B ) ) )
10985, 87, 1083brtr3d 4684 1  |-  ( ph  ->  ( G  gsumg  ( F  |`  C ) )  <_  ( G  gsumg  ( F  |`  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    <_ cle 10075   +ecxad 11944   [,]cicc 12178   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   RR*scxrs 16160  SubMndcsubmnd 17334  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-xadd 11947  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-gsum 16103  df-xrs 16162  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  xrge0tsms  22637  xrge0tsmsd  29785
  Copyright terms: Public domain W3C validator