MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogsublem Structured version   Visualization version   GIF version

Theorem atanlogsublem 24642
Description: Lemma for atanlogsub 24643. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
atanlogsublem ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))

Proof of Theorem atanlogsublem
StepHypRef Expression
1 ax-1cn 9994 . . . . . 6 1 ∈ ℂ
2 ax-icn 9995 . . . . . . 7 i ∈ ℂ
3 simpl 473 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ dom arctan)
4 atandm2 24604 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
53, 4sylib 208 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
65simp1d 1073 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
7 mulcl 10020 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
82, 6, 7sylancr 695 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
9 addcl 10018 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
101, 8, 9sylancr 695 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ∈ ℂ)
115simp3d 1075 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ≠ 0)
1210, 11logcld 24317 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
13 subcl 10280 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
141, 8, 13sylancr 695 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ∈ ℂ)
155simp2d 1074 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ≠ 0)
1614, 15logcld 24317 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
1712, 16imsubd 13957 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((ℑ‘(log‘(1 + (i · 𝐴)))) − (ℑ‘(log‘(1 − (i · 𝐴))))))
182a1i 11 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → i ∈ ℂ)
1918, 6, 18subdid 10486 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 − i)) = ((i · 𝐴) − (i · i)))
20 ixi 10656 . . . . . . . . . . 11 (i · i) = -1
2120oveq2i 6661 . . . . . . . . . 10 ((i · 𝐴) − (i · i)) = ((i · 𝐴) − -1)
22 subneg 10330 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
238, 1, 22sylancl 694 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
2421, 23syl5eq 2668 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) − (i · i)) = ((i · 𝐴) + 1))
25 addcom 10222 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) + 1) = (1 + (i · 𝐴)))
268, 1, 25sylancl 694 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + 1) = (1 + (i · 𝐴)))
2719, 24, 263eqtrd 2660 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 − i)) = (1 + (i · 𝐴)))
2827fveq2d 6195 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 − i))) = (log‘(1 + (i · 𝐴))))
29 subcl 10280 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − i) ∈ ℂ)
306, 2, 29sylancl 694 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 − i) ∈ ℂ)
31 resub 13867 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℜ‘(𝐴 − i)) = ((ℜ‘𝐴) − (ℜ‘i)))
326, 2, 31sylancl 694 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) = ((ℜ‘𝐴) − (ℜ‘i)))
33 rei 13896 . . . . . . . . . . . . 13 (ℜ‘i) = 0
3433oveq2i 6661 . . . . . . . . . . . 12 ((ℜ‘𝐴) − (ℜ‘i)) = ((ℜ‘𝐴) − 0)
356recld 13934 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
3635recnd 10068 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℂ)
3736subid1d 10381 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) − 0) = (ℜ‘𝐴))
3834, 37syl5eq 2668 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) − (ℜ‘i)) = (ℜ‘𝐴))
3932, 38eqtrd 2656 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) = (ℜ‘𝐴))
40 gt0ne0 10493 . . . . . . . . . . 11 (((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4135, 40sylancom 701 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4239, 41eqnetrd 2861 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) ≠ 0)
43 fveq2 6191 . . . . . . . . . . 11 ((𝐴 − i) = 0 → (ℜ‘(𝐴 − i)) = (ℜ‘0))
44 re0 13892 . . . . . . . . . . 11 (ℜ‘0) = 0
4543, 44syl6eq 2672 . . . . . . . . . 10 ((𝐴 − i) = 0 → (ℜ‘(𝐴 − i)) = 0)
4645necon3i 2826 . . . . . . . . 9 ((ℜ‘(𝐴 − i)) ≠ 0 → (𝐴 − i) ≠ 0)
4742, 46syl 17 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 − i) ≠ 0)
48 simpr 477 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
49 0re 10040 . . . . . . . . . . 11 0 ∈ ℝ
50 ltle 10126 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴)))
5149, 35, 50sylancr 695 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴)))
5248, 51mpd 15 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘𝐴))
5352, 39breqtrrd 4681 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 − i)))
54 logimul 24360 . . . . . . . 8 (((𝐴 − i) ∈ ℂ ∧ (𝐴 − i) ≠ 0 ∧ 0 ≤ (ℜ‘(𝐴 − i))) → (log‘(i · (𝐴 − i))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5530, 47, 53, 54syl3anc 1326 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 − i))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5628, 55eqtr3d 2658 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5756fveq2d 6195 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) = (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))))
5830, 47logcld 24317 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(𝐴 − i)) ∈ ℂ)
59 halfpire 24216 . . . . . . . . 9 (π / 2) ∈ ℝ
6059recni 10052 . . . . . . . 8 (π / 2) ∈ ℂ
612, 60mulcli 10045 . . . . . . 7 (i · (π / 2)) ∈ ℂ
62 imadd 13874 . . . . . . 7 (((log‘(𝐴 − i)) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))))
6358, 61, 62sylancl 694 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))))
64 reim 13849 . . . . . . . . 9 ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))))
6560, 64ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))
66 rere 13862 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
6759, 66ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
6865, 67eqtr3i 2646 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
6968oveq2i 6661 . . . . . 6 ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2))
7063, 69syl6eq 2672 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2)))
7157, 70eqtrd 2656 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2)))
72 addcl 10018 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
736, 2, 72sylancl 694 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 + i) ∈ ℂ)
74 mulcl 10020 . . . . . . . . 9 ((i ∈ ℂ ∧ (𝐴 + i) ∈ ℂ) → (i · (𝐴 + i)) ∈ ℂ)
752, 73, 74sylancr 695 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) ∈ ℂ)
76 reim 13849 . . . . . . . . . . 11 ((𝐴 + i) ∈ ℂ → (ℜ‘(𝐴 + i)) = (ℑ‘(i · (𝐴 + i))))
7773, 76syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = (ℑ‘(i · (𝐴 + i))))
78 readd 13866 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℜ‘(𝐴 + i)) = ((ℜ‘𝐴) + (ℜ‘i)))
796, 2, 78sylancl 694 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = ((ℜ‘𝐴) + (ℜ‘i)))
8033oveq2i 6661 . . . . . . . . . . . 12 ((ℜ‘𝐴) + (ℜ‘i)) = ((ℜ‘𝐴) + 0)
8136addid1d 10236 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
8280, 81syl5eq 2668 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) + (ℜ‘i)) = (ℜ‘𝐴))
8379, 82eqtrd 2656 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = (ℜ‘𝐴))
8477, 83eqtr3d 2658 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(i · (𝐴 + i))) = (ℜ‘𝐴))
8548, 84breqtrrd 4681 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(i · (𝐴 + i))))
86 logneg2 24361 . . . . . . . 8 (((i · (𝐴 + i)) ∈ ℂ ∧ 0 < (ℑ‘(i · (𝐴 + i)))) → (log‘-(i · (𝐴 + i))) = ((log‘(i · (𝐴 + i))) − (i · π)))
8775, 85, 86syl2anc 693 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘-(i · (𝐴 + i))) = ((log‘(i · (𝐴 + i))) − (i · π)))
8818, 6, 18adddid 10064 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) = ((i · 𝐴) + (i · i)))
8920oveq2i 6661 . . . . . . . . . . . 12 ((i · 𝐴) + (i · i)) = ((i · 𝐴) + -1)
90 negsub 10329 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) + -1) = ((i · 𝐴) − 1))
918, 1, 90sylancl 694 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + -1) = ((i · 𝐴) − 1))
9289, 91syl5eq 2668 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + (i · i)) = ((i · 𝐴) − 1))
9388, 92eqtrd 2656 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) = ((i · 𝐴) − 1))
9493negeqd 10275 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(i · (𝐴 + i)) = -((i · 𝐴) − 1))
95 negsubdi2 10340 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((i · 𝐴) − 1) = (1 − (i · 𝐴)))
968, 1, 95sylancl 694 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -((i · 𝐴) − 1) = (1 − (i · 𝐴)))
9794, 96eqtrd 2656 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(i · (𝐴 + i)) = (1 − (i · 𝐴)))
9897fveq2d 6195 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘-(i · (𝐴 + i))) = (log‘(1 − (i · 𝐴))))
9983, 41eqnetrd 2861 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) ≠ 0)
100 fveq2 6191 . . . . . . . . . . . . 13 ((𝐴 + i) = 0 → (ℜ‘(𝐴 + i)) = (ℜ‘0))
101100, 44syl6eq 2672 . . . . . . . . . . . 12 ((𝐴 + i) = 0 → (ℜ‘(𝐴 + i)) = 0)
102101necon3i 2826 . . . . . . . . . . 11 ((ℜ‘(𝐴 + i)) ≠ 0 → (𝐴 + i) ≠ 0)
10399, 102syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 + i) ≠ 0)
10452, 83breqtrrd 4681 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 + i)))
105 logimul 24360 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ (𝐴 + i) ≠ 0 ∧ 0 ≤ (ℜ‘(𝐴 + i))) → (log‘(i · (𝐴 + i))) = ((log‘(𝐴 + i)) + (i · (π / 2))))
10673, 103, 104, 105syl3anc 1326 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 + i))) = ((log‘(𝐴 + i)) + (i · (π / 2))))
107106oveq1d 6665 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(i · (𝐴 + i))) − (i · π)) = (((log‘(𝐴 + i)) + (i · (π / 2))) − (i · π)))
10873, 103logcld 24317 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(𝐴 + i)) ∈ ℂ)
10961a1i 11 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (π / 2)) ∈ ℂ)
110 picn 24211 . . . . . . . . . . 11 π ∈ ℂ
1112, 110mulcli 10045 . . . . . . . . . 10 (i · π) ∈ ℂ
112111a1i 11 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · π) ∈ ℂ)
113108, 109, 112addsubassd 10412 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((log‘(𝐴 + i)) + (i · (π / 2))) − (i · π)) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
114107, 113eqtrd 2656 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(i · (𝐴 + i))) − (i · π)) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
11587, 98, 1143eqtr3d 2664 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
116115fveq2d 6195 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) = (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))))
11761, 111subcli 10357 . . . . . . 7 ((i · (π / 2)) − (i · π)) ∈ ℂ
118 imadd 13874 . . . . . . 7 (((log‘(𝐴 + i)) ∈ ℂ ∧ ((i · (π / 2)) − (i · π)) ∈ ℂ) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))))
119108, 117, 118sylancl 694 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))))
120 imsub 13875 . . . . . . . . 9 (((i · (π / 2)) ∈ ℂ ∧ (i · π) ∈ ℂ) → (ℑ‘((i · (π / 2)) − (i · π))) = ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π))))
12161, 111, 120mp2an 708 . . . . . . . 8 (ℑ‘((i · (π / 2)) − (i · π))) = ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π)))
122 reim 13849 . . . . . . . . . . 11 (π ∈ ℂ → (ℜ‘π) = (ℑ‘(i · π)))
123110, 122ax-mp 5 . . . . . . . . . 10 (ℜ‘π) = (ℑ‘(i · π))
124 pire 24210 . . . . . . . . . . 11 π ∈ ℝ
125 rere 13862 . . . . . . . . . . 11 (π ∈ ℝ → (ℜ‘π) = π)
126124, 125ax-mp 5 . . . . . . . . . 10 (ℜ‘π) = π
127123, 126eqtr3i 2646 . . . . . . . . 9 (ℑ‘(i · π)) = π
12868, 127oveq12i 6662 . . . . . . . 8 ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π))) = ((π / 2) − π)
12960negcli 10349 . . . . . . . . 9 -(π / 2) ∈ ℂ
130110, 60negsubi 10359 . . . . . . . . . 10 (π + -(π / 2)) = (π − (π / 2))
131 pidiv2halves 24219 . . . . . . . . . . 11 ((π / 2) + (π / 2)) = π
132110, 60, 60, 131subaddrii 10370 . . . . . . . . . 10 (π − (π / 2)) = (π / 2)
133130, 132eqtri 2644 . . . . . . . . 9 (π + -(π / 2)) = (π / 2)
13460, 110, 129, 133subaddrii 10370 . . . . . . . 8 ((π / 2) − π) = -(π / 2)
135121, 128, 1343eqtri 2648 . . . . . . 7 (ℑ‘((i · (π / 2)) − (i · π))) = -(π / 2)
136135oveq2i 6661 . . . . . 6 ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))
137119, 136syl6eq 2672 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2)))
138116, 137eqtrd 2656 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2)))
13971, 138oveq12d 6668 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) − (ℑ‘(log‘(1 − (i · 𝐴))))) = (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))))
14058imcld 13935 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ ℝ)
141140recnd 10068 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ ℂ)
14260a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (π / 2) ∈ ℂ)
143108imcld 13935 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ ℝ)
144143recnd 10068 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ ℂ)
145129a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(π / 2) ∈ ℂ)
146141, 142, 144, 145addsub4d 10439 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + ((π / 2) − -(π / 2))))
14760, 60subnegi 10360 . . . . . 6 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
148147, 131eqtri 2644 . . . . 5 ((π / 2) − -(π / 2)) = π
149148oveq2i 6661 . . . 4 (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + ((π / 2) − -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π)
150146, 149syl6eq 2672 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
15117, 139, 1503eqtrd 2660 . 2 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
152140, 143resubcld 10458 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ∈ ℝ)
153 readdcl 10019 . . . 4 ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ)
154152, 124, 153sylancl 694 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ)
155124renegcli 10342 . . . . . . 7 -π ∈ ℝ
156155recni 10052 . . . . . 6 -π ∈ ℂ
157156, 110negsubi 10359 . . . . 5 (-π + -π) = (-π − π)
158155a1i 11 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ∈ ℝ)
159143renegcld 10457 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℑ‘(log‘(𝐴 + i))) ∈ ℝ)
16030, 47logimcld 24318 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(𝐴 − i))) ∧ (ℑ‘(log‘(𝐴 − i))) ≤ π))
161160simpld 475 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘(𝐴 − i))))
16273, 103logimcld 24318 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(𝐴 + i))) ∧ (ℑ‘(log‘(𝐴 + i))) ≤ π))
163162simprd 479 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ≤ π)
164 leneg 10531 . . . . . . . . 9 (((ℑ‘(log‘(𝐴 + i))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘(𝐴 + i))) ≤ π ↔ -π ≤ -(ℑ‘(log‘(𝐴 + i)))))
165143, 124, 164sylancl 694 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 + i))) ≤ π ↔ -π ≤ -(ℑ‘(log‘(𝐴 + i)))))
166163, 165mpbid 222 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ≤ -(ℑ‘(log‘(𝐴 + i))))
167158, 158, 140, 159, 161, 166ltleaddd 10648 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π + -π) < ((ℑ‘(log‘(𝐴 − i))) + -(ℑ‘(log‘(𝐴 + i)))))
168141, 144negsubd 10398 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) + -(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
169167, 168breqtrd 4679 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π + -π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
170157, 169syl5eqbrr 4689 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π − π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
171124a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → π ∈ ℝ)
172158, 171, 152ltsubaddd 10623 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((-π − π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ↔ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π)))
173170, 172mpbid 222 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
174 0red 10041 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
1756imcld 13935 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘𝐴) ∈ ℝ)
176 peano2rem 10348 . . . . . . . . . . . . 13 ((ℑ‘𝐴) ∈ ℝ → ((ℑ‘𝐴) − 1) ∈ ℝ)
177175, 176syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) ∈ ℝ)
178 peano2re 10209 . . . . . . . . . . . . 13 ((ℑ‘𝐴) ∈ ℝ → ((ℑ‘𝐴) + 1) ∈ ℝ)
179175, 178syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) + 1) ∈ ℝ)
180175ltm1d 10956 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) < (ℑ‘𝐴))
181175ltp1d 10954 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘𝐴) < ((ℑ‘𝐴) + 1))
182177, 175, 179, 180, 181lttrd 10198 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1))
183 ltdiv1 10887 . . . . . . . . . . . 12 ((((ℑ‘𝐴) − 1) ∈ ℝ ∧ ((ℑ‘𝐴) + 1) ∈ ℝ ∧ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴))) → (((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1) ↔ (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴))))
184177, 179, 35, 48, 183syl112anc 1330 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1) ↔ (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴))))
185182, 184mpbid 222 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴)))
186 imsub 13875 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − (ℑ‘i)))
1876, 2, 186sylancl 694 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − (ℑ‘i)))
188 imi 13897 . . . . . . . . . . . . 13 (ℑ‘i) = 1
189188oveq2i 6661 . . . . . . . . . . . 12 ((ℑ‘𝐴) − (ℑ‘i)) = ((ℑ‘𝐴) − 1)
190187, 189syl6eq 2672 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − 1))
191190, 39oveq12d 6668 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))) = (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)))
192 imadd 13874 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + (ℑ‘i)))
1936, 2, 192sylancl 694 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + (ℑ‘i)))
194188oveq2i 6661 . . . . . . . . . . . 12 ((ℑ‘𝐴) + (ℑ‘i)) = ((ℑ‘𝐴) + 1)
195193, 194syl6eq 2672 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + 1))
196195, 83oveq12d 6668 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))) = (((ℑ‘𝐴) + 1) / (ℜ‘𝐴)))
197185, 191, 1963brtr4d 4685 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))) < ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
198 tanarg 24365 . . . . . . . . . 10 (((𝐴 − i) ∈ ℂ ∧ (ℜ‘(𝐴 − i)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐴 − i)))) = ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))))
19930, 42, 198syl2anc 693 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 − i)))) = ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))))
200 tanarg 24365 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ (ℜ‘(𝐴 + i)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
20173, 99, 200syl2anc 693 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
202197, 199, 2013brtr4d 4685 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i)))))
20348, 39breqtrrd 4681 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 − i)))
204 argregt0 24356 . . . . . . . . . 10 (((𝐴 − i) ∈ ℂ ∧ 0 < (ℜ‘(𝐴 − i))) → (ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)))
20530, 203, 204syl2anc 693 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)))
20648, 83breqtrrd 4681 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 + i)))
207 argregt0 24356 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ 0 < (ℜ‘(𝐴 + i))) → (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2)))
20873, 206, 207syl2anc 693 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2)))
209 tanord 24284 . . . . . . . . 9 (((ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)) ∧ (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2))) → ((ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))) ↔ (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i))))))
210205, 208, 209syl2anc 693 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))) ↔ (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i))))))
211202, 210mpbird 247 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))))
212144addid2d 10237 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 + (ℑ‘(log‘(𝐴 + i)))) = (ℑ‘(log‘(𝐴 + i))))
213211, 212breqtrrd 4681 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) < (0 + (ℑ‘(log‘(𝐴 + i)))))
214140, 143, 174ltsubaddd 10623 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) < 0 ↔ (ℑ‘(log‘(𝐴 − i))) < (0 + (ℑ‘(log‘(𝐴 + i))))))
215213, 214mpbird 247 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) < 0)
216152, 174, 171, 215ltadd1dd 10638 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < (0 + π))
217110addid2i 10224 . . . 4 (0 + π) = π
218216, 217syl6breq 4694 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π)
219155rexri 10097 . . . 4 -π ∈ ℝ*
220124rexri 10097 . . . 4 π ∈ ℝ*
221 elioo2 12216 . . . 4 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π) ↔ ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ ∧ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∧ (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π)))
222219, 220, 221mp2an 708 . . 3 ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π) ↔ ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ ∧ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∧ (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π))
223154, 173, 218, 222syl3anbrc 1246 . 2 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π))
224151, 223eqeltrd 2701 1 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  2c2 11070  (,)cioo 12175  cre 13837  cim 13838  tanctan 14796  πcpi 14797  logclog 24301  arctancatan 24591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-atan 24594
This theorem is referenced by:  atanlogsub  24643  atanbndlem  24652
  Copyright terms: Public domain W3C validator