Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm3.1lem2 Structured version   Visualization version   GIF version

Theorem jm3.1lem2 37585
Description: Lemma for jm3.1 37587. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
jm3.1.a (𝜑𝐴 ∈ (ℤ‘2))
jm3.1.b (𝜑𝐾 ∈ (ℤ‘2))
jm3.1.c (𝜑𝑁 ∈ ℕ)
jm3.1.d (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
Assertion
Ref Expression
jm3.1lem2 (𝜑 → (𝐾𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))

Proof of Theorem jm3.1lem2
StepHypRef Expression
1 jm3.1.b . . . 4 (𝜑𝐾 ∈ (ℤ‘2))
2 eluzelre 11698 . . . 4 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
31, 2syl 17 . . 3 (𝜑𝐾 ∈ ℝ)
4 jm3.1.c . . . 4 (𝜑𝑁 ∈ ℕ)
54nnnn0d 11351 . . 3 (𝜑𝑁 ∈ ℕ0)
63, 5reexpcld 13025 . 2 (𝜑 → (𝐾𝑁) ∈ ℝ)
7 jm3.1.a . . 3 (𝜑𝐴 ∈ (ℤ‘2))
8 eluzelre 11698 . . 3 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
97, 8syl 17 . 2 (𝜑𝐴 ∈ ℝ)
10 2re 11090 . . . . . 6 2 ∈ ℝ
11 remulcl 10021 . . . . . 6 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
1210, 9, 11sylancr 695 . . . . 5 (𝜑 → (2 · 𝐴) ∈ ℝ)
1312, 3remulcld 10070 . . . 4 (𝜑 → ((2 · 𝐴) · 𝐾) ∈ ℝ)
143resqcld 13035 . . . 4 (𝜑 → (𝐾↑2) ∈ ℝ)
1513, 14resubcld 10458 . . 3 (𝜑 → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℝ)
16 1re 10039 . . 3 1 ∈ ℝ
17 resubcl 10345 . . 3 (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℝ)
1815, 16, 17sylancl 694 . 2 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℝ)
19 jm3.1.d . . 3 (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴)
207, 1, 4, 19jm3.1lem1 37584 . 2 (𝜑 → (𝐾𝑁) < 𝐴)
219, 3remulcld 10070 . . . 4 (𝜑 → (𝐴 · 𝐾) ∈ ℝ)
22 resubcl 10345 . . . . 5 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 − 1) ∈ ℝ)
233, 16, 22sylancl 694 . . . 4 (𝜑 → (𝐾 − 1) ∈ ℝ)
2421, 23readdcld 10069 . . 3 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) ∈ ℝ)
25 eluz2b1 11759 . . . . . . 7 (𝐾 ∈ (ℤ‘2) ↔ (𝐾 ∈ ℤ ∧ 1 < 𝐾))
2625simprbi 480 . . . . . 6 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
271, 26syl 17 . . . . 5 (𝜑 → 1 < 𝐾)
28 eluz2nn 11726 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
297, 28syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
3029nngt0d 11064 . . . . . 6 (𝜑 → 0 < 𝐴)
31 ltmulgt11 10883 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐾𝐴 < (𝐴 · 𝐾)))
329, 3, 30, 31syl3anc 1326 . . . . 5 (𝜑 → (1 < 𝐾𝐴 < (𝐴 · 𝐾)))
3327, 32mpbid 222 . . . 4 (𝜑𝐴 < (𝐴 · 𝐾))
34 uz2m1nn 11763 . . . . . . 7 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
351, 34syl 17 . . . . . 6 (𝜑 → (𝐾 − 1) ∈ ℕ)
3635nnrpd 11870 . . . . 5 (𝜑 → (𝐾 − 1) ∈ ℝ+)
3721, 36ltaddrpd 11905 . . . 4 (𝜑 → (𝐴 · 𝐾) < ((𝐴 · 𝐾) + (𝐾 − 1)))
389, 21, 24, 33, 37lttrd 10198 . . 3 (𝜑𝐴 < ((𝐴 · 𝐾) + (𝐾 − 1)))
39 peano2re 10209 . . . . . . 7 (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ)
403, 39syl 17 . . . . . 6 (𝜑 → (𝐾 + 1) ∈ ℝ)
4140, 3remulcld 10070 . . . . 5 (𝜑 → ((𝐾 + 1) · 𝐾) ∈ ℝ)
42 resubcl 10345 . . . . . . 7 (((𝐴 · 𝐾) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 · 𝐾) − 1) ∈ ℝ)
4321, 16, 42sylancl 694 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) − 1) ∈ ℝ)
4443, 14resubcld 10458 . . . . 5 (𝜑 → (((𝐴 · 𝐾) − 1) − (𝐾↑2)) ∈ ℝ)
453recnd 10068 . . . . . . . . . 10 (𝜑𝐾 ∈ ℂ)
4645exp1d 13003 . . . . . . . . 9 (𝜑 → (𝐾↑1) = 𝐾)
47 eluz2nn 11726 . . . . . . . . . . . 12 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
481, 47syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℕ)
4948nnge1d 11063 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝐾)
50 nnuz 11723 . . . . . . . . . . 11 ℕ = (ℤ‘1)
514, 50syl6eleq 2711 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘1))
523, 49, 51leexp2ad 13041 . . . . . . . . 9 (𝜑 → (𝐾↑1) ≤ (𝐾𝑁))
5346, 52eqbrtrrd 4677 . . . . . . . 8 (𝜑𝐾 ≤ (𝐾𝑁))
543, 6, 9, 53, 20lelttrd 10195 . . . . . . 7 (𝜑𝐾 < 𝐴)
55 eluzelz 11697 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℤ)
561, 55syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
57 eluzelz 11697 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
587, 57syl 17 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
59 zltp1le 11427 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐾 < 𝐴 ↔ (𝐾 + 1) ≤ 𝐴))
6056, 58, 59syl2anc 693 . . . . . . 7 (𝜑 → (𝐾 < 𝐴 ↔ (𝐾 + 1) ≤ 𝐴))
6154, 60mpbid 222 . . . . . 6 (𝜑 → (𝐾 + 1) ≤ 𝐴)
6248nngt0d 11064 . . . . . . 7 (𝜑 → 0 < 𝐾)
63 lemul1 10875 . . . . . . 7 (((𝐾 + 1) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → ((𝐾 + 1) ≤ 𝐴 ↔ ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾)))
6440, 9, 3, 62, 63syl112anc 1330 . . . . . 6 (𝜑 → ((𝐾 + 1) ≤ 𝐴 ↔ ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾)))
6561, 64mpbid 222 . . . . 5 (𝜑 → ((𝐾 + 1) · 𝐾) ≤ (𝐴 · 𝐾))
6641, 21, 44, 65leadd1dd 10641 . . . 4 (𝜑 → (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))) ≤ ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
6721recnd 10068 . . . . . 6 (𝜑 → (𝐴 · 𝐾) ∈ ℂ)
6841, 14resubcld 10458 . . . . . . 7 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) ∈ ℝ)
6968recnd 10068 . . . . . 6 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) ∈ ℂ)
70 1cnd 10056 . . . . . 6 (𝜑 → 1 ∈ ℂ)
7167, 69, 70addsub12d 10415 . . . . 5 (𝜑 → ((𝐴 · 𝐾) + ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1)) = ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) + ((𝐴 · 𝐾) − 1)))
7245, 70, 45adddird 10065 . . . . . . . . 9 (𝜑 → ((𝐾 + 1) · 𝐾) = ((𝐾 · 𝐾) + (1 · 𝐾)))
7345sqvald 13005 . . . . . . . . 9 (𝜑 → (𝐾↑2) = (𝐾 · 𝐾))
7472, 73oveq12d 6668 . . . . . . . 8 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) = (((𝐾 · 𝐾) + (1 · 𝐾)) − (𝐾 · 𝐾)))
7545, 45mulcld 10060 . . . . . . . . 9 (𝜑 → (𝐾 · 𝐾) ∈ ℂ)
76 ax-1cn 9994 . . . . . . . . . 10 1 ∈ ℂ
77 mulcl 10020 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (1 · 𝐾) ∈ ℂ)
7876, 45, 77sylancr 695 . . . . . . . . 9 (𝜑 → (1 · 𝐾) ∈ ℂ)
7975, 78pncan2d 10394 . . . . . . . 8 (𝜑 → (((𝐾 · 𝐾) + (1 · 𝐾)) − (𝐾 · 𝐾)) = (1 · 𝐾))
8045mulid2d 10058 . . . . . . . 8 (𝜑 → (1 · 𝐾) = 𝐾)
8174, 79, 803eqtrd 2660 . . . . . . 7 (𝜑 → (((𝐾 + 1) · 𝐾) − (𝐾↑2)) = 𝐾)
8281oveq1d 6665 . . . . . 6 (𝜑 → ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1) = (𝐾 − 1))
8382oveq2d 6666 . . . . 5 (𝜑 → ((𝐴 · 𝐾) + ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) − 1)) = ((𝐴 · 𝐾) + (𝐾 − 1)))
8441recnd 10068 . . . . . 6 (𝜑 → ((𝐾 + 1) · 𝐾) ∈ ℂ)
8514recnd 10068 . . . . . 6 (𝜑 → (𝐾↑2) ∈ ℂ)
8643recnd 10068 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) − 1) ∈ ℂ)
8784, 85, 86subadd23d 10414 . . . . 5 (𝜑 → ((((𝐾 + 1) · 𝐾) − (𝐾↑2)) + ((𝐴 · 𝐾) − 1)) = (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
8871, 83, 873eqtr3d 2664 . . . 4 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) = (((𝐾 + 1) · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
89 2cnd 11093 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
909recnd 10068 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
9189, 90, 45mulassd 10063 . . . . . . . 8 (𝜑 → ((2 · 𝐴) · 𝐾) = (2 · (𝐴 · 𝐾)))
92672timesd 11275 . . . . . . . 8 (𝜑 → (2 · (𝐴 · 𝐾)) = ((𝐴 · 𝐾) + (𝐴 · 𝐾)))
9391, 92eqtrd 2656 . . . . . . 7 (𝜑 → ((2 · 𝐴) · 𝐾) = ((𝐴 · 𝐾) + (𝐴 · 𝐾)))
9493oveq1d 6665 . . . . . 6 (𝜑 → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) = (((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)))
9594oveq1d 6665 . . . . 5 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) = ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)) − 1))
9621, 21readdcld 10069 . . . . . . 7 (𝜑 → ((𝐴 · 𝐾) + (𝐴 · 𝐾)) ∈ ℝ)
9796recnd 10068 . . . . . 6 (𝜑 → ((𝐴 · 𝐾) + (𝐴 · 𝐾)) ∈ ℂ)
9897, 85, 70sub32d 10424 . . . . 5 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − (𝐾↑2)) − 1) = ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)))
9967, 67, 70addsubassd 10412 . . . . . . 7 (𝜑 → (((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) = ((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)))
10099oveq1d 6665 . . . . . 6 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)) = (((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)) − (𝐾↑2)))
10167, 86, 85addsubassd 10412 . . . . . 6 (𝜑 → (((𝐴 · 𝐾) + ((𝐴 · 𝐾) − 1)) − (𝐾↑2)) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
102100, 101eqtrd 2656 . . . . 5 (𝜑 → ((((𝐴 · 𝐾) + (𝐴 · 𝐾)) − 1) − (𝐾↑2)) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
10395, 98, 1023eqtrd 2660 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) = ((𝐴 · 𝐾) + (((𝐴 · 𝐾) − 1) − (𝐾↑2))))
10466, 88, 1033brtr4d 4685 . . 3 (𝜑 → ((𝐴 · 𝐾) + (𝐾 − 1)) ≤ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
1059, 24, 18, 38, 104ltletrd 10197 . 2 (𝜑𝐴 < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
1066, 9, 18, 20, 105lttrd 10198 1 (𝜑 → (𝐾𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  2c2 11070  cz 11377  cuz 11687  cexp 12860   Yrm crmy 37465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-squarenn 37405  df-pell1qr 37406  df-pell14qr 37407  df-pell1234qr 37408  df-pellfund 37409  df-rmx 37466  df-rmy 37467
This theorem is referenced by:  jm3.1lem3  37586  jm3.1  37587
  Copyright terms: Public domain W3C validator