| Step | Hyp | Ref
| Expression |
| 1 | | unieq 4444 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∪ ∅) |
| 2 | | uni0 4465 |
. . . . . . . . . . 11
⊢ ∪ ∅ = ∅ |
| 3 | 1, 2 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∅) |
| 4 | 3 | ineq2d 3814 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑏 ∩ ∪ 𝑥) =
(𝑏 ∩
∅)) |
| 5 | | in0 3968 |
. . . . . . . . 9
⊢ (𝑏 ∩ ∅) =
∅ |
| 6 | 4, 5 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑏 ∩ ∪ 𝑥) =
∅) |
| 7 | 6 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = ∅ →
(#‘(𝑏 ∩ ∪ 𝑥))
= (#‘∅)) |
| 8 | | hash0 13158 |
. . . . . . 7
⊢
(#‘∅) = 0 |
| 9 | 7, 8 | syl6eq 2672 |
. . . . . 6
⊢ (𝑥 = ∅ →
(#‘(𝑏 ∩ ∪ 𝑥))
= 0) |
| 10 | 9 | oveq2d 6666 |
. . . . 5
⊢ (𝑥 = ∅ →
((#‘𝑏) −
(#‘(𝑏 ∩ ∪ 𝑥)))
= ((#‘𝑏) −
0)) |
| 11 | | pweq 4161 |
. . . . . . 7
⊢ (𝑥 = ∅ → 𝒫
𝑥 = 𝒫
∅) |
| 12 | | pw0 4343 |
. . . . . . 7
⊢ 𝒫
∅ = {∅} |
| 13 | 11, 12 | syl6eq 2672 |
. . . . . 6
⊢ (𝑥 = ∅ → 𝒫
𝑥 =
{∅}) |
| 14 | 13 | sumeq1d 14431 |
. . . . 5
⊢ (𝑥 = ∅ → Σ𝑠 ∈ 𝒫 𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))
= Σ𝑠 ∈ {∅}
((-1↑(#‘𝑠))
· (#‘(𝑏 ∩
∩ 𝑠)))) |
| 15 | 10, 14 | eqeq12d 2637 |
. . . 4
⊢ (𝑥 = ∅ →
(((#‘𝑏) −
(#‘(𝑏 ∩ ∪ 𝑥)))
= Σ𝑠 ∈ 𝒫
𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))
↔ ((#‘𝑏) −
0) = Σ𝑠 ∈
{∅} ((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))))) |
| 16 | 15 | ralbidv 2986 |
. . 3
⊢ (𝑥 = ∅ → (∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑥)))
= Σ𝑠 ∈ 𝒫
𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))
↔ ∀𝑏 ∈ Fin
((#‘𝑏) − 0) =
Σ𝑠 ∈ {∅}
((-1↑(#‘𝑠))
· (#‘(𝑏 ∩
∩ 𝑠))))) |
| 17 | | unieq 4444 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ∪ 𝑥 = ∪
𝑦) |
| 18 | 17 | ineq2d 3814 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑏 ∩ ∪ 𝑥) = (𝑏 ∩ ∪ 𝑦)) |
| 19 | 18 | fveq2d 6195 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (#‘(𝑏 ∩ ∪ 𝑥)) = (#‘(𝑏 ∩ ∪ 𝑦))) |
| 20 | 19 | oveq2d 6666 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑥))) = ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦)))) |
| 21 | | pweq 4161 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦) |
| 22 | 21 | sumeq1d 14431 |
. . . . 5
⊢ (𝑥 = 𝑦 → Σ𝑠 ∈ 𝒫 𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) |
| 23 | 20, 22 | eqeq12d 2637 |
. . . 4
⊢ (𝑥 = 𝑦 → (((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦)))
= Σ𝑠 ∈ 𝒫
𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))))) |
| 24 | 23 | ralbidv 2986 |
. . 3
⊢ (𝑥 = 𝑦 → (∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦)))
= Σ𝑠 ∈ 𝒫
𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))))) |
| 25 | | unieq 4444 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∪ 𝑥 = ∪
(𝑦 ∪ {𝑧})) |
| 26 | | uniun 4456 |
. . . . . . . . . 10
⊢ ∪ (𝑦
∪ {𝑧}) = (∪ 𝑦
∪ ∪ {𝑧}) |
| 27 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
| 28 | 27 | unisn 4451 |
. . . . . . . . . . 11
⊢ ∪ {𝑧}
= 𝑧 |
| 29 | 28 | uneq2i 3764 |
. . . . . . . . . 10
⊢ (∪ 𝑦
∪ ∪ {𝑧}) = (∪ 𝑦 ∪ 𝑧) |
| 30 | 26, 29 | eqtri 2644 |
. . . . . . . . 9
⊢ ∪ (𝑦
∪ {𝑧}) = (∪ 𝑦
∪ 𝑧) |
| 31 | 25, 30 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ∪ 𝑥 = (∪
𝑦 ∪ 𝑧)) |
| 32 | 31 | ineq2d 3814 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑏 ∩ ∪ 𝑥) = (𝑏 ∩ (∪ 𝑦 ∪ 𝑧))) |
| 33 | 32 | fveq2d 6195 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (#‘(𝑏 ∩ ∪ 𝑥)) = (#‘(𝑏 ∩ (∪ 𝑦
∪ 𝑧)))) |
| 34 | 33 | oveq2d 6666 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑥))) = ((#‘𝑏) − (#‘(𝑏 ∩ (∪ 𝑦
∪ 𝑧))))) |
| 35 | | pweq 4161 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → 𝒫 𝑥 = 𝒫 (𝑦 ∪ {𝑧})) |
| 36 | 35 | sumeq1d 14431 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑠 ∈ 𝒫 𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) |
| 37 | 34, 36 | eqeq12d 2637 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ((#‘𝑏) − (#‘(𝑏 ∩ (∪ 𝑦
∪ 𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))))) |
| 38 | 37 | ralbidv 2986 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ (∪ 𝑦
∪ 𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))))) |
| 39 | | unieq 4444 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪
𝐴) |
| 40 | 39 | ineq2d 3814 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑏 ∩ ∪ 𝑥) = (𝑏 ∩ ∪ 𝐴)) |
| 41 | 40 | fveq2d 6195 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (#‘(𝑏 ∩ ∪ 𝑥)) = (#‘(𝑏 ∩ ∪ 𝐴))) |
| 42 | 41 | oveq2d 6666 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑥))) = ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝐴)))) |
| 43 | | pweq 4161 |
. . . . . 6
⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) |
| 44 | 43 | sumeq1d 14431 |
. . . . 5
⊢ (𝑥 = 𝐴 → Σ𝑠 ∈ 𝒫 𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) |
| 45 | 42, 44 | eqeq12d 2637 |
. . . 4
⊢ (𝑥 = 𝐴 → (((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝐴)))
= Σ𝑠 ∈ 𝒫
𝐴((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))))) |
| 46 | 45 | ralbidv 2986 |
. . 3
⊢ (𝑥 = 𝐴 → (∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑥))) = Σ𝑠 ∈ 𝒫 𝑥((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝐴)))
= Σ𝑠 ∈ 𝒫
𝐴((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))))) |
| 47 | | hashcl 13147 |
. . . . . . 7
⊢ (𝑏 ∈ Fin →
(#‘𝑏) ∈
ℕ0) |
| 48 | 47 | nn0cnd 11353 |
. . . . . 6
⊢ (𝑏 ∈ Fin →
(#‘𝑏) ∈
ℂ) |
| 49 | 48 | mulid2d 10058 |
. . . . 5
⊢ (𝑏 ∈ Fin → (1 ·
(#‘𝑏)) =
(#‘𝑏)) |
| 50 | | 0ex 4790 |
. . . . . 6
⊢ ∅
∈ V |
| 51 | 49, 48 | eqeltrd 2701 |
. . . . . 6
⊢ (𝑏 ∈ Fin → (1 ·
(#‘𝑏)) ∈
ℂ) |
| 52 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑠 = ∅ → (#‘𝑠) =
(#‘∅)) |
| 53 | 52, 8 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝑠 = ∅ → (#‘𝑠) = 0) |
| 54 | 53 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑠 = ∅ →
(-1↑(#‘𝑠)) =
(-1↑0)) |
| 55 | | neg1cn 11124 |
. . . . . . . . . 10
⊢ -1 ∈
ℂ |
| 56 | | exp0 12864 |
. . . . . . . . . 10
⊢ (-1
∈ ℂ → (-1↑0) = 1) |
| 57 | 55, 56 | ax-mp 5 |
. . . . . . . . 9
⊢
(-1↑0) = 1 |
| 58 | 54, 57 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑠 = ∅ →
(-1↑(#‘𝑠)) =
1) |
| 59 | | rint0 4517 |
. . . . . . . . 9
⊢ (𝑠 = ∅ → (𝑏 ∩ ∩ 𝑠) =
𝑏) |
| 60 | 59 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑠 = ∅ →
(#‘(𝑏 ∩ ∩ 𝑠))
= (#‘𝑏)) |
| 61 | 58, 60 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑠 = ∅ →
((-1↑(#‘𝑠))
· (#‘(𝑏 ∩
∩ 𝑠))) = (1 · (#‘𝑏))) |
| 62 | 61 | sumsn 14475 |
. . . . . 6
⊢ ((∅
∈ V ∧ (1 · (#‘𝑏)) ∈ ℂ) → Σ𝑠 ∈ {∅}
((-1↑(#‘𝑠))
· (#‘(𝑏 ∩
∩ 𝑠))) = (1 · (#‘𝑏))) |
| 63 | 50, 51, 62 | sylancr 695 |
. . . . 5
⊢ (𝑏 ∈ Fin → Σ𝑠 ∈ {∅}
((-1↑(#‘𝑠))
· (#‘(𝑏 ∩
∩ 𝑠))) = (1 · (#‘𝑏))) |
| 64 | 48 | subid1d 10381 |
. . . . 5
⊢ (𝑏 ∈ Fin →
((#‘𝑏) − 0) =
(#‘𝑏)) |
| 65 | 49, 63, 64 | 3eqtr4rd 2667 |
. . . 4
⊢ (𝑏 ∈ Fin →
((#‘𝑏) − 0) =
Σ𝑠 ∈ {∅}
((-1↑(#‘𝑠))
· (#‘(𝑏 ∩
∩ 𝑠)))) |
| 66 | 65 | rgen 2922 |
. . 3
⊢
∀𝑏 ∈ Fin
((#‘𝑏) − 0) =
Σ𝑠 ∈ {∅}
((-1↑(#‘𝑠))
· (#‘(𝑏 ∩
∩ 𝑠))) |
| 67 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑥 → (#‘𝑏) = (#‘𝑥)) |
| 68 | | ineq1 3807 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑥 → (𝑏 ∩ ∪ 𝑦) = (𝑥 ∩ ∪ 𝑦)) |
| 69 | 68 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑥 → (#‘(𝑏 ∩ ∪ 𝑦)) = (#‘(𝑥 ∩ ∪ 𝑦))) |
| 70 | 67, 69 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑥 → ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = ((#‘𝑥) − (#‘(𝑥 ∩ ∪ 𝑦)))) |
| 71 | | simpl 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦) → 𝑏 = 𝑥) |
| 72 | 71 | ineq1d 3813 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦) → (𝑏 ∩ ∩ 𝑠) = (𝑥 ∩ ∩ 𝑠)) |
| 73 | 72 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦) → (#‘(𝑏 ∩ ∩ 𝑠)) = (#‘(𝑥 ∩ ∩ 𝑠))) |
| 74 | 73 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝑥 ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))
= ((-1↑(#‘𝑠))
· (#‘(𝑥 ∩
∩ 𝑠)))) |
| 75 | 74 | sumeq2dv 14433 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑥 → Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))) |
| 76 | 70, 75 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑥 → (((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ((#‘𝑥) − (#‘(𝑥 ∩ ∪ 𝑦)))
= Σ𝑠 ∈ 𝒫
𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))))) |
| 77 | 76 | rspcva 3307 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Fin ∧ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦)))
= Σ𝑠 ∈ 𝒫
𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) → ((#‘𝑥) − (#‘(𝑥 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))) |
| 78 | 77 | adantll 750 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) → ((#‘𝑥) − (#‘(𝑥 ∩ ∪ 𝑦)))
= Σ𝑠 ∈ 𝒫
𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))) |
| 79 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → 𝑥 ∈ Fin) |
| 80 | | inss1 3833 |
. . . . . . . . . 10
⊢ (𝑥 ∩ 𝑧) ⊆ 𝑥 |
| 81 | | ssfi 8180 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Fin ∧ (𝑥 ∩ 𝑧) ⊆ 𝑥) → (𝑥 ∩ 𝑧) ∈ Fin) |
| 82 | 79, 80, 81 | sylancl 694 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (𝑥 ∩ 𝑧) ∈ Fin) |
| 83 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑥 ∩ 𝑧) → (#‘𝑏) = (#‘(𝑥 ∩ 𝑧))) |
| 84 | | ineq1 3807 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (𝑥 ∩ 𝑧) → (𝑏 ∩ ∪ 𝑦) = ((𝑥 ∩ 𝑧) ∩ ∪ 𝑦)) |
| 85 | | in32 3825 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∩ 𝑧) ∩ ∪ 𝑦) = ((𝑥 ∩ ∪ 𝑦) ∩ 𝑧) |
| 86 | | inass 3823 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∩ ∪ 𝑦)
∩ 𝑧) = (𝑥 ∩ (∪ 𝑦
∩ 𝑧)) |
| 87 | 85, 86 | eqtri 2644 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∩ 𝑧) ∩ ∪ 𝑦) = (𝑥 ∩ (∪ 𝑦 ∩ 𝑧)) |
| 88 | 84, 87 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝑥 ∩ 𝑧) → (𝑏 ∩ ∪ 𝑦) = (𝑥 ∩ (∪ 𝑦 ∩ 𝑧))) |
| 89 | 88 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑥 ∩ 𝑧) → (#‘(𝑏 ∩ ∪ 𝑦)) = (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧)))) |
| 90 | 83, 89 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑥 ∩ 𝑧) → ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = ((#‘(𝑥 ∩ 𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦 ∩ 𝑧))))) |
| 91 | | ineq1 3807 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑥 ∩ 𝑧) → (𝑏 ∩ ∩ 𝑠) = ((𝑥 ∩ 𝑧) ∩ ∩ 𝑠)) |
| 92 | | in32 3825 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∩ 𝑧) ∩ ∩ 𝑠) = ((𝑥 ∩ ∩ 𝑠) ∩ 𝑧) |
| 93 | | inass 3823 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∩ ∩ 𝑠)
∩ 𝑧) = (𝑥 ∩ (∩ 𝑠
∩ 𝑧)) |
| 94 | 92, 93 | eqtri 2644 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∩ 𝑧) ∩ ∩ 𝑠) = (𝑥 ∩ (∩ 𝑠 ∩ 𝑧)) |
| 95 | 91, 94 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (𝑥 ∩ 𝑧) → (𝑏 ∩ ∩ 𝑠) = (𝑥 ∩ (∩ 𝑠 ∩ 𝑧))) |
| 96 | 95 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝑥 ∩ 𝑧) → (#‘(𝑏 ∩ ∩ 𝑠)) = (#‘(𝑥 ∩ (∩ 𝑠
∩ 𝑧)))) |
| 97 | 96 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑥 ∩ 𝑧) → ((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))
= ((-1↑(#‘𝑠))
· (#‘(𝑥 ∩
(∩ 𝑠 ∩ 𝑧))))) |
| 98 | 97 | sumeq2sdv 14435 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑥 ∩ 𝑧) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) |
| 99 | 90, 98 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑥 ∩ 𝑧) → (((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ((#‘(𝑥 ∩ 𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦 ∩ 𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧)))))) |
| 100 | 99 | rspcva 3307 |
. . . . . . . . 9
⊢ (((𝑥 ∩ 𝑧) ∈ Fin ∧ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) → ((#‘(𝑥 ∩ 𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦 ∩ 𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) |
| 101 | 82, 100 | sylan 488 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) → ((#‘(𝑥 ∩ 𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦 ∩ 𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) |
| 102 | 78, 101 | oveq12d 6668 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) → (((#‘𝑥) − (#‘(𝑥 ∩ ∪ 𝑦)))
− ((#‘(𝑥 ∩
𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧))))) =
(Σ𝑠 ∈ 𝒫
𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))
− Σ𝑠 ∈
𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧)))))) |
| 103 | | inss1 3833 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∩ ∪ 𝑦)
⊆ 𝑥 |
| 104 | | ssfi 8180 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ Fin ∧ (𝑥 ∩ ∪ 𝑦)
⊆ 𝑥) → (𝑥 ∩ ∪ 𝑦)
∈ Fin) |
| 105 | 79, 103, 104 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (𝑥 ∩ ∪ 𝑦) ∈ Fin) |
| 106 | | hashun3 13173 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∩ ∪ 𝑦)
∈ Fin ∧ (𝑥 ∩
𝑧) ∈ Fin) →
(#‘((𝑥 ∩ ∪ 𝑦)
∪ (𝑥 ∩ 𝑧))) = (((#‘(𝑥 ∩ ∪ 𝑦))
+ (#‘(𝑥 ∩ 𝑧))) − (#‘((𝑥 ∩ ∪ 𝑦)
∩ (𝑥 ∩ 𝑧))))) |
| 107 | 105, 82, 106 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘((𝑥 ∩ ∪ 𝑦)
∪ (𝑥 ∩ 𝑧))) = (((#‘(𝑥 ∩ ∪ 𝑦))
+ (#‘(𝑥 ∩ 𝑧))) − (#‘((𝑥 ∩ ∪ 𝑦)
∩ (𝑥 ∩ 𝑧))))) |
| 108 | | indi 3873 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∩ (∪ 𝑦
∪ 𝑧)) = ((𝑥 ∩ ∪ 𝑦)
∪ (𝑥 ∩ 𝑧)) |
| 109 | 108 | fveq2i 6194 |
. . . . . . . . . . . 12
⊢
(#‘(𝑥 ∩
(∪ 𝑦 ∪ 𝑧))) = (#‘((𝑥 ∩ ∪ 𝑦) ∪ (𝑥 ∩ 𝑧))) |
| 110 | | inindi 3830 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∩ (∪ 𝑦
∩ 𝑧)) = ((𝑥 ∩ ∪ 𝑦)
∩ (𝑥 ∩ 𝑧)) |
| 111 | 110 | fveq2i 6194 |
. . . . . . . . . . . . 13
⊢
(#‘(𝑥 ∩
(∪ 𝑦 ∩ 𝑧))) = (#‘((𝑥 ∩ ∪ 𝑦) ∩ (𝑥 ∩ 𝑧))) |
| 112 | 111 | oveq2i 6661 |
. . . . . . . . . . . 12
⊢
(((#‘(𝑥 ∩
∪ 𝑦)) + (#‘(𝑥 ∩ 𝑧))) − (#‘(𝑥 ∩ (∪ 𝑦 ∩ 𝑧)))) = (((#‘(𝑥 ∩ ∪ 𝑦)) + (#‘(𝑥 ∩ 𝑧))) − (#‘((𝑥 ∩ ∪ 𝑦) ∩ (𝑥 ∩ 𝑧)))) |
| 113 | 107, 109,
112 | 3eqtr4g 2681 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘(𝑥 ∩ (∪ 𝑦
∪ 𝑧))) =
(((#‘(𝑥 ∩ ∪ 𝑦))
+ (#‘(𝑥 ∩ 𝑧))) − (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧))))) |
| 114 | | hashcl 13147 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∩ ∪ 𝑦)
∈ Fin → (#‘(𝑥 ∩ ∪ 𝑦)) ∈
ℕ0) |
| 115 | 105, 114 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘(𝑥 ∩ ∪ 𝑦))
∈ ℕ0) |
| 116 | 115 | nn0cnd 11353 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘(𝑥 ∩ ∪ 𝑦))
∈ ℂ) |
| 117 | | hashcl 13147 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∩ 𝑧) ∈ Fin → (#‘(𝑥 ∩ 𝑧)) ∈
ℕ0) |
| 118 | 82, 117 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘(𝑥 ∩ 𝑧)) ∈
ℕ0) |
| 119 | 118 | nn0cnd 11353 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘(𝑥 ∩ 𝑧)) ∈ ℂ) |
| 120 | | inss1 3833 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∩ (∪ 𝑦
∩ 𝑧)) ⊆ 𝑥 |
| 121 | | ssfi 8180 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ Fin ∧ (𝑥 ∩ (∪ 𝑦
∩ 𝑧)) ⊆ 𝑥) → (𝑥 ∩ (∪ 𝑦 ∩ 𝑧)) ∈ Fin) |
| 122 | 79, 120, 121 | sylancl 694 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (𝑥 ∩ (∪ 𝑦 ∩ 𝑧)) ∈ Fin) |
| 123 | | hashcl 13147 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∩ (∪ 𝑦
∩ 𝑧)) ∈ Fin →
(#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧))) ∈
ℕ0) |
| 124 | 122, 123 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧))) ∈
ℕ0) |
| 125 | 124 | nn0cnd 11353 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧))) ∈
ℂ) |
| 126 | 116, 119,
125 | addsubassd 10412 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (((#‘(𝑥 ∩ ∪ 𝑦))
+ (#‘(𝑥 ∩ 𝑧))) − (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧)))) =
((#‘(𝑥 ∩ ∪ 𝑦))
+ ((#‘(𝑥 ∩ 𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧)))))) |
| 127 | 113, 126 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘(𝑥 ∩ (∪ 𝑦
∪ 𝑧))) =
((#‘(𝑥 ∩ ∪ 𝑦))
+ ((#‘(𝑥 ∩ 𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧)))))) |
| 128 | 127 | oveq2d 6666 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → ((#‘𝑥) − (#‘(𝑥 ∩ (∪ 𝑦
∪ 𝑧)))) =
((#‘𝑥) −
((#‘(𝑥 ∩ ∪ 𝑦))
+ ((#‘(𝑥 ∩ 𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧))))))) |
| 129 | | hashcl 13147 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ Fin →
(#‘𝑥) ∈
ℕ0) |
| 130 | 129 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘𝑥) ∈
ℕ0) |
| 131 | 130 | nn0cnd 11353 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (#‘𝑥) ∈
ℂ) |
| 132 | 119, 125 | subcld 10392 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → ((#‘(𝑥 ∩ 𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦 ∩ 𝑧)))) ∈ ℂ) |
| 133 | 131, 116,
132 | subsub4d 10423 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (((#‘𝑥) − (#‘(𝑥 ∩ ∪ 𝑦)))
− ((#‘(𝑥 ∩
𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧))))) =
((#‘𝑥) −
((#‘(𝑥 ∩ ∪ 𝑦))
+ ((#‘(𝑥 ∩ 𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧))))))) |
| 134 | 128, 133 | eqtr4d 2659 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → ((#‘𝑥) − (#‘(𝑥 ∩ (∪ 𝑦
∪ 𝑧)))) =
(((#‘𝑥) −
(#‘(𝑥 ∩ ∪ 𝑦)))
− ((#‘(𝑥 ∩
𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧)))))) |
| 135 | 134 | adantr 481 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) → ((#‘𝑥) − (#‘(𝑥 ∩ (∪ 𝑦
∪ 𝑧)))) =
(((#‘𝑥) −
(#‘(𝑥 ∩ ∪ 𝑦)))
− ((#‘(𝑥 ∩
𝑧)) − (#‘(𝑥 ∩ (∪ 𝑦
∩ 𝑧)))))) |
| 136 | | disjdif 4040 |
. . . . . . . . . . 11
⊢
(𝒫 𝑦 ∩
(𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = ∅ |
| 137 | 136 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (𝒫 𝑦 ∩ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = ∅) |
| 138 | | ssun1 3776 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
| 139 | | sspwb 4917 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) ↔ 𝒫 𝑦 ⊆ 𝒫 (𝑦 ∪ {𝑧})) |
| 140 | 138, 139 | mpbi 220 |
. . . . . . . . . . . . 13
⊢ 𝒫
𝑦 ⊆ 𝒫 (𝑦 ∪ {𝑧}) |
| 141 | | undif 4049 |
. . . . . . . . . . . . 13
⊢
(𝒫 𝑦 ⊆
𝒫 (𝑦 ∪ {𝑧}) ↔ (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = 𝒫 (𝑦 ∪ {𝑧})) |
| 142 | 140, 141 | mpbi 220 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑦 ∪
(𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) = 𝒫 (𝑦 ∪ {𝑧}) |
| 143 | 142 | eqcomi 2631 |
. . . . . . . . . . 11
⊢ 𝒫
(𝑦 ∪ {𝑧}) = (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) |
| 144 | 143 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 (𝑦 ∪ {𝑧}) = (𝒫 𝑦 ∪ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) |
| 145 | | simpll 790 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → 𝑦 ∈ Fin) |
| 146 | | snfi 8038 |
. . . . . . . . . . . 12
⊢ {𝑧} ∈ Fin |
| 147 | | unfi 8227 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 148 | 145, 146,
147 | sylancl 694 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 149 | | pwfi 8261 |
. . . . . . . . . . 11
⊢ ((𝑦 ∪ {𝑧}) ∈ Fin ↔ 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin) |
| 150 | 148, 149 | sylib 208 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 (𝑦 ∪ {𝑧}) ∈ Fin) |
| 151 | 55 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → -1 ∈
ℂ) |
| 152 | | elpwi 4168 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧}) → 𝑠 ⊆ (𝑦 ∪ {𝑧})) |
| 153 | | ssfi 8180 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∪ {𝑧}) ∈ Fin ∧ 𝑠 ⊆ (𝑦 ∪ {𝑧})) → 𝑠 ∈ Fin) |
| 154 | 148, 152,
153 | syl2an 494 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → 𝑠 ∈ Fin) |
| 155 | | hashcl 13147 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ Fin →
(#‘𝑠) ∈
ℕ0) |
| 156 | 154, 155 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (#‘𝑠) ∈
ℕ0) |
| 157 | 151, 156 | expcld 13008 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (-1↑(#‘𝑠)) ∈
ℂ) |
| 158 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → 𝑥 ∈ Fin) |
| 159 | | inss1 3833 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∩ ∩ 𝑠)
⊆ 𝑥 |
| 160 | | ssfi 8180 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ Fin ∧ (𝑥 ∩ ∩ 𝑠)
⊆ 𝑥) → (𝑥 ∩ ∩ 𝑠)
∈ Fin) |
| 161 | 158, 159,
160 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (𝑥 ∩ ∩ 𝑠) ∈ Fin) |
| 162 | | hashcl 13147 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∩ ∩ 𝑠)
∈ Fin → (#‘(𝑥 ∩ ∩ 𝑠)) ∈
ℕ0) |
| 163 | 161, 162 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (#‘(𝑥 ∩ ∩ 𝑠)) ∈
ℕ0) |
| 164 | 163 | nn0cnd 11353 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (#‘(𝑥 ∩ ∩ 𝑠)) ∈
ℂ) |
| 165 | 157, 164 | mulcld 10060 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → ((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))
∈ ℂ) |
| 166 | 137, 144,
150, 165 | fsumsplit 14471 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) + Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))))) |
| 167 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑡 ∪ {𝑧}) → (#‘𝑠) = (#‘(𝑡 ∪ {𝑧}))) |
| 168 | 167 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑡 ∪ {𝑧}) → (-1↑(#‘𝑠)) = (-1↑(#‘(𝑡 ∪ {𝑧})))) |
| 169 | | inteq 4478 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑡 ∪ {𝑧}) → ∩ 𝑠 = ∩
(𝑡 ∪ {𝑧})) |
| 170 | 27 | intunsn 4516 |
. . . . . . . . . . . . . . . 16
⊢ ∩ (𝑡
∪ {𝑧}) = (∩ 𝑡
∩ 𝑧) |
| 171 | 169, 170 | syl6eq 2672 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑡 ∪ {𝑧}) → ∩ 𝑠 = (∩
𝑡 ∩ 𝑧)) |
| 172 | 171 | ineq2d 3814 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑡 ∪ {𝑧}) → (𝑥 ∩ ∩ 𝑠) = (𝑥 ∩ (∩ 𝑡 ∩ 𝑧))) |
| 173 | 172 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑡 ∪ {𝑧}) → (#‘(𝑥 ∩ ∩ 𝑠)) = (#‘(𝑥 ∩ (∩ 𝑡
∩ 𝑧)))) |
| 174 | 168, 173 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑡 ∪ {𝑧}) → ((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))
= ((-1↑(#‘(𝑡
∪ {𝑧}))) ·
(#‘(𝑥 ∩ (∩ 𝑡
∩ 𝑧))))) |
| 175 | | pwfi 8261 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ Fin ↔ 𝒫
𝑦 ∈
Fin) |
| 176 | 145, 175 | sylib 208 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 𝑦 ∈ Fin) |
| 177 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧})) = (𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧})) |
| 178 | | elpwi 4168 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ 𝒫 𝑦 → 𝑢 ⊆ 𝑦) |
| 179 | 178 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → 𝑢 ⊆ 𝑦) |
| 180 | | unss1 3782 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ⊆ 𝑦 → (𝑢 ∪ {𝑧}) ⊆ (𝑦 ∪ {𝑧})) |
| 181 | 179, 180 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → (𝑢 ∪ {𝑧}) ⊆ (𝑦 ∪ {𝑧})) |
| 182 | | vex 3203 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑢 ∈ V |
| 183 | | snex 4908 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑧} ∈ V |
| 184 | 182, 183 | unex 6956 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∪ {𝑧}) ∈ V |
| 185 | 184 | elpw 4164 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∪ {𝑧}) ∈ 𝒫 (𝑦 ∪ {𝑧}) ↔ (𝑢 ∪ {𝑧}) ⊆ (𝑦 ∪ {𝑧})) |
| 186 | 181, 185 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → (𝑢 ∪ {𝑧}) ∈ 𝒫 (𝑦 ∪ {𝑧})) |
| 187 | | simpllr 799 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → ¬ 𝑧 ∈ 𝑦) |
| 188 | | elpwi 4168 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∪ {𝑧}) ∈ 𝒫 𝑦 → (𝑢 ∪ {𝑧}) ⊆ 𝑦) |
| 189 | | ssun2 3777 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑧} ⊆ (𝑢 ∪ {𝑧}) |
| 190 | 27 | snss 4316 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ (𝑢 ∪ {𝑧}) ↔ {𝑧} ⊆ (𝑢 ∪ {𝑧})) |
| 191 | 189, 190 | mpbir 221 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ (𝑢 ∪ {𝑧}) |
| 192 | 191 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → 𝑧 ∈ (𝑢 ∪ {𝑧})) |
| 193 | | ssel 3597 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∪ {𝑧}) ⊆ 𝑦 → (𝑧 ∈ (𝑢 ∪ {𝑧}) → 𝑧 ∈ 𝑦)) |
| 194 | 188, 192,
193 | syl2imc 41 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → ((𝑢 ∪ {𝑧}) ∈ 𝒫 𝑦 → 𝑧 ∈ 𝑦)) |
| 195 | 187, 194 | mtod 189 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → ¬ (𝑢 ∪ {𝑧}) ∈ 𝒫 𝑦) |
| 196 | 186, 195 | eldifd 3585 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑢 ∈ 𝒫 𝑦) → (𝑢 ∪ {𝑧}) ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) |
| 197 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦) → 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) |
| 198 | 197 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) |
| 199 | 198 | elpwid 4170 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → 𝑠 ⊆ (𝑦 ∪ {𝑧})) |
| 200 | | uncom 3757 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∪ {𝑧}) = ({𝑧} ∪ 𝑦) |
| 201 | 199, 200 | syl6sseq 3651 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → 𝑠 ⊆ ({𝑧} ∪ 𝑦)) |
| 202 | | ssundif 4052 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ⊆ ({𝑧} ∪ 𝑦) ↔ (𝑠 ∖ {𝑧}) ⊆ 𝑦) |
| 203 | 201, 202 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → (𝑠 ∖ {𝑧}) ⊆ 𝑦) |
| 204 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
| 205 | 204 | elpw2 4828 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∖ {𝑧}) ∈ 𝒫 𝑦 ↔ (𝑠 ∖ {𝑧}) ⊆ 𝑦) |
| 206 | 203, 205 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → (𝑠 ∖ {𝑧}) ∈ 𝒫 𝑦) |
| 207 | | elpwunsn 4224 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦) → 𝑧 ∈ 𝑠) |
| 208 | 207 | ad2antll 765 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑧 ∈ 𝑠) |
| 209 | 208 | snssd 4340 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → {𝑧} ⊆ 𝑠) |
| 210 | | ssequn2 3786 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑧} ⊆ 𝑠 ↔ (𝑠 ∪ {𝑧}) = 𝑠) |
| 211 | 209, 210 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑠 ∪ {𝑧}) = 𝑠) |
| 212 | 211 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑠 = (𝑠 ∪ {𝑧})) |
| 213 | | uneq1 3760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = (𝑠 ∖ {𝑧}) → (𝑢 ∪ {𝑧}) = ((𝑠 ∖ {𝑧}) ∪ {𝑧})) |
| 214 | | undif1 4043 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∖ {𝑧}) ∪ {𝑧}) = (𝑠 ∪ {𝑧}) |
| 215 | 213, 214 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = (𝑠 ∖ {𝑧}) → (𝑢 ∪ {𝑧}) = (𝑠 ∪ {𝑧})) |
| 216 | 215 | eqeq2d 2632 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (𝑠 ∖ {𝑧}) → (𝑠 = (𝑢 ∪ {𝑧}) ↔ 𝑠 = (𝑠 ∪ {𝑧}))) |
| 217 | 212, 216 | syl5ibrcom 237 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑢 = (𝑠 ∖ {𝑧}) → 𝑠 = (𝑢 ∪ {𝑧}))) |
| 218 | 178 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑢 ⊆ 𝑦) |
| 219 | | simpllr 799 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → ¬ 𝑧 ∈ 𝑦) |
| 220 | 218, 219 | ssneldd 3606 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → ¬ 𝑧 ∈ 𝑢) |
| 221 | | difsnb 4337 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑧 ∈ 𝑢 ↔ (𝑢 ∖ {𝑧}) = 𝑢) |
| 222 | 220, 221 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑢 ∖ {𝑧}) = 𝑢) |
| 223 | 222 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → 𝑢 = (𝑢 ∖ {𝑧})) |
| 224 | | difeq1 3721 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝑢 ∪ {𝑧}) → (𝑠 ∖ {𝑧}) = ((𝑢 ∪ {𝑧}) ∖ {𝑧})) |
| 225 | | difun2 4048 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∪ {𝑧}) ∖ {𝑧}) = (𝑢 ∖ {𝑧}) |
| 226 | 224, 225 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝑢 ∪ {𝑧}) → (𝑠 ∖ {𝑧}) = (𝑢 ∖ {𝑧})) |
| 227 | 226 | eqeq2d 2632 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝑢 ∪ {𝑧}) → (𝑢 = (𝑠 ∖ {𝑧}) ↔ 𝑢 = (𝑢 ∖ {𝑧}))) |
| 228 | 223, 227 | syl5ibrcom 237 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑠 = (𝑢 ∪ {𝑧}) → 𝑢 = (𝑠 ∖ {𝑧}))) |
| 229 | 217, 228 | impbid 202 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ (𝑢 ∈ 𝒫 𝑦 ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦))) → (𝑢 = (𝑠 ∖ {𝑧}) ↔ 𝑠 = (𝑢 ∪ {𝑧}))) |
| 230 | 177, 196,
206, 229 | f1o2d 6887 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧})):𝒫 𝑦–1-1-onto→(𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) |
| 231 | | uneq1 3760 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑡 → (𝑢 ∪ {𝑧}) = (𝑡 ∪ {𝑧})) |
| 232 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑡 ∈ V |
| 233 | 232, 183 | unex 6956 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∪ {𝑧}) ∈ V |
| 234 | 231, 177,
233 | fvmpt 6282 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝒫 𝑦 → ((𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧}))‘𝑡) = (𝑡 ∪ {𝑧})) |
| 235 | 234 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑡 ∈ 𝒫 𝑦) → ((𝑢 ∈ 𝒫 𝑦 ↦ (𝑢 ∪ {𝑧}))‘𝑡) = (𝑡 ∪ {𝑧})) |
| 236 | 197, 165 | sylan2 491 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)) → ((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))
∈ ℂ) |
| 237 | 174, 176,
230, 235, 236 | fsumf1o 14454 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) = Σ𝑡 ∈ 𝒫 𝑦((-1↑(#‘(𝑡 ∪ {𝑧}))) · (#‘(𝑥 ∩ (∩ 𝑡 ∩ 𝑧))))) |
| 238 | | uneq1 3760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑠 → (𝑡 ∪ {𝑧}) = (𝑠 ∪ {𝑧})) |
| 239 | 238 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑠 → (#‘(𝑡 ∪ {𝑧})) = (#‘(𝑠 ∪ {𝑧}))) |
| 240 | 239 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑠 → (-1↑(#‘(𝑡 ∪ {𝑧}))) = (-1↑(#‘(𝑠 ∪ {𝑧})))) |
| 241 | | inteq 4478 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑠 → ∩ 𝑡 = ∩
𝑠) |
| 242 | 241 | ineq1d 3813 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑠 → (∩ 𝑡 ∩ 𝑧) = (∩ 𝑠 ∩ 𝑧)) |
| 243 | 242 | ineq2d 3814 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑠 → (𝑥 ∩ (∩ 𝑡 ∩ 𝑧)) = (𝑥 ∩ (∩ 𝑠 ∩ 𝑧))) |
| 244 | 243 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑠 → (#‘(𝑥 ∩ (∩ 𝑡 ∩ 𝑧))) = (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧)))) |
| 245 | 240, 244 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑠 → ((-1↑(#‘(𝑡 ∪ {𝑧}))) · (#‘(𝑥 ∩ (∩ 𝑡 ∩ 𝑧)))) = ((-1↑(#‘(𝑠 ∪ {𝑧}))) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) |
| 246 | 245 | cbvsumv 14426 |
. . . . . . . . . . . 12
⊢
Σ𝑡 ∈
𝒫 𝑦((-1↑(#‘(𝑡 ∪ {𝑧}))) · (#‘(𝑥 ∩ (∩ 𝑡 ∩ 𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘(𝑠 ∪ {𝑧}))) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧)))) |
| 247 | 55 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → -1 ∈ ℂ) |
| 248 | | elpwi 4168 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ 𝒫 𝑦 → 𝑠 ⊆ 𝑦) |
| 249 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ Fin ∧ 𝑠 ⊆ 𝑦) → 𝑠 ∈ Fin) |
| 250 | 145, 248,
249 | syl2an 494 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → 𝑠 ∈ Fin) |
| 251 | 250, 155 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (#‘𝑠) ∈
ℕ0) |
| 252 | 247, 251 | expp1d 13009 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑((#‘𝑠) + 1)) =
((-1↑(#‘𝑠))
· -1)) |
| 253 | 248 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → 𝑠 ⊆ 𝑦) |
| 254 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ¬ 𝑧 ∈ 𝑦) |
| 255 | 253, 254 | ssneldd 3606 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ¬ 𝑧 ∈ 𝑠) |
| 256 | | hashunsng 13181 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ V → ((𝑠 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑠) → (#‘(𝑠 ∪ {𝑧})) = ((#‘𝑠) + 1))) |
| 257 | 27, 256 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑠) → (#‘(𝑠 ∪ {𝑧})) = ((#‘𝑠) + 1)) |
| 258 | 250, 255,
257 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (#‘(𝑠 ∪ {𝑧})) = ((#‘𝑠) + 1)) |
| 259 | 258 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(#‘(𝑠 ∪ {𝑧}))) = (-1↑((#‘𝑠) + 1))) |
| 260 | 140 | sseli 3599 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ 𝒫 𝑦 → 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) |
| 261 | 260, 157 | sylan2 491 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(#‘𝑠)) ∈ ℂ) |
| 262 | 247, 261 | mulcomd 10061 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1 · (-1↑(#‘𝑠))) = ((-1↑(#‘𝑠)) ·
-1)) |
| 263 | 252, 259,
262 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(#‘(𝑠 ∪ {𝑧}))) = (-1 · (-1↑(#‘𝑠)))) |
| 264 | 261 | mulm1d 10482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1 · (-1↑(#‘𝑠))) = -(-1↑(#‘𝑠))) |
| 265 | 263, 264 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-1↑(#‘(𝑠 ∪ {𝑧}))) = -(-1↑(#‘𝑠))) |
| 266 | 265 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(#‘(𝑠 ∪ {𝑧}))) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧)))) = (-(-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) |
| 267 | | inss1 3833 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∩ (∩ 𝑠
∩ 𝑧)) ⊆ 𝑥 |
| 268 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ Fin ∧ (𝑥 ∩ (∩ 𝑠
∩ 𝑧)) ⊆ 𝑥) → (𝑥 ∩ (∩ 𝑠 ∩ 𝑧)) ∈ Fin) |
| 269 | 158, 267,
268 | sylancl 694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (𝑥 ∩ (∩ 𝑠 ∩ 𝑧)) ∈ Fin) |
| 270 | | hashcl 13147 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∩ (∩ 𝑠
∩ 𝑧)) ∈ Fin →
(#‘(𝑥 ∩ (∩ 𝑠
∩ 𝑧))) ∈
ℕ0) |
| 271 | 269, 270 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))) ∈
ℕ0) |
| 272 | 271 | nn0cnd 11353 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))) ∈ ℂ) |
| 273 | 260, 272 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))) ∈ ℂ) |
| 274 | 261, 273 | mulneg1d 10483 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → (-(-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠
∩ 𝑧)))) =
-((-1↑(#‘𝑠))
· (#‘(𝑥 ∩
(∩ 𝑠 ∩ 𝑧))))) |
| 275 | 266, 274 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(#‘(𝑠 ∪ {𝑧}))) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧)))) = -((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) |
| 276 | 275 | sumeq2dv 14433 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘(𝑠 ∪ {𝑧}))) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦-((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) |
| 277 | 246, 276 | syl5eq 2668 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑡 ∈ 𝒫 𝑦((-1↑(#‘(𝑡 ∪ {𝑧}))) · (#‘(𝑥 ∩ (∩ 𝑡 ∩ 𝑧)))) = Σ𝑠 ∈ 𝒫 𝑦-((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) |
| 278 | 157, 272 | mulcld 10060 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) → ((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠
∩ 𝑧)))) ∈
ℂ) |
| 279 | 260, 278 | sylan2 491 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠
∩ 𝑧)))) ∈
ℂ) |
| 280 | 176, 279 | fsumneg 14519 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦-((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧)))) = -Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) |
| 281 | 237, 277,
280 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ (𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) = -Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) |
| 282 | 281 | oveq2d 6666 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))
+ Σ𝑠 ∈
(𝒫 (𝑦 ∪ {𝑧}) ∖ 𝒫 𝑦)((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) + -Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧)))))) |
| 283 | 140 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → 𝒫 𝑦 ⊆ 𝒫 (𝑦 ∪ {𝑧})) |
| 284 | 283 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → 𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})) |
| 285 | 284, 165 | syldan 487 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))
∈ ℂ) |
| 286 | 176, 285 | fsumcl 14464 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) ∈
ℂ) |
| 287 | 284, 278 | syldan 487 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ 𝑠 ∈ 𝒫 𝑦) → ((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠
∩ 𝑧)))) ∈
ℂ) |
| 288 | 176, 287 | fsumcl 14464 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧)))) ∈ ℂ) |
| 289 | 286, 288 | negsubd 10398 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))
+ -Σ𝑠 ∈
𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠 ∩ 𝑧))))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠
∩ 𝑧)))))) |
| 290 | 166, 282,
289 | 3eqtrd 2660 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠
∩ 𝑧)))))) |
| 291 | 290 | adantr 481 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) = (Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))) − Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ (∩ 𝑠
∩ 𝑧)))))) |
| 292 | 102, 135,
291 | 3eqtr4d 2666 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) ∧ ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) → ((#‘𝑥) − (#‘(𝑥 ∩ (∪ 𝑦
∪ 𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))) |
| 293 | 292 | ex 450 |
. . . . 5
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑥 ∈ Fin) → (∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦)))
= Σ𝑠 ∈ 𝒫
𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))
→ ((#‘𝑥) −
(#‘(𝑥 ∩ (∪ 𝑦
∪ 𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))))) |
| 294 | 293 | ralrimdva 2969 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) → ∀𝑥 ∈ Fin ((#‘𝑥) − (#‘(𝑥 ∩ (∪ 𝑦
∪ 𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))))) |
| 295 | | ineq1 3807 |
. . . . . . . 8
⊢ (𝑏 = 𝑥 → (𝑏 ∩ (∪ 𝑦 ∪ 𝑧)) = (𝑥 ∩ (∪ 𝑦 ∪ 𝑧))) |
| 296 | 295 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑏 = 𝑥 → (#‘(𝑏 ∩ (∪ 𝑦 ∪ 𝑧))) = (#‘(𝑥 ∩ (∪ 𝑦 ∪ 𝑧)))) |
| 297 | 67, 296 | oveq12d 6668 |
. . . . . 6
⊢ (𝑏 = 𝑥 → ((#‘𝑏) − (#‘(𝑏 ∩ (∪ 𝑦 ∪ 𝑧)))) = ((#‘𝑥) − (#‘(𝑥 ∩ (∪ 𝑦 ∪ 𝑧))))) |
| 298 | | ineq1 3807 |
. . . . . . . . 9
⊢ (𝑏 = 𝑥 → (𝑏 ∩ ∩ 𝑠) = (𝑥 ∩ ∩ 𝑠)) |
| 299 | 298 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑏 = 𝑥 → (#‘(𝑏 ∩ ∩ 𝑠)) = (#‘(𝑥 ∩ ∩ 𝑠))) |
| 300 | 299 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑏 = 𝑥 → ((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) = ((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))) |
| 301 | 300 | sumeq2sdv 14435 |
. . . . . 6
⊢ (𝑏 = 𝑥 → Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))) |
| 302 | 297, 301 | eqeq12d 2637 |
. . . . 5
⊢ (𝑏 = 𝑥 → (((#‘𝑏) − (#‘(𝑏 ∩ (∪ 𝑦 ∪ 𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ((#‘𝑥) − (#‘(𝑥 ∩ (∪ 𝑦
∪ 𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠))))) |
| 303 | 302 | cbvralv 3171 |
. . . 4
⊢
(∀𝑏 ∈
Fin ((#‘𝑏) −
(#‘(𝑏 ∩ (∪ 𝑦
∪ 𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ∀𝑥 ∈ Fin ((#‘𝑥) − (#‘(𝑥 ∩ (∪ 𝑦
∪ 𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑥 ∩ ∩ 𝑠)))) |
| 304 | 294, 303 | syl6ibr 242 |
. . 3
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝑦))) = Σ𝑠 ∈ 𝒫 𝑦((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) → ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ (∪ 𝑦
∪ 𝑧)))) = Σ𝑠 ∈ 𝒫 (𝑦 ∪ {𝑧})((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))))) |
| 305 | 16, 24, 38, 46, 66, 304 | findcard2s 8201 |
. 2
⊢ (𝐴 ∈ Fin → ∀𝑏 ∈ Fin ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝐴)))
= Σ𝑠 ∈ 𝒫
𝐴((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))) |
| 306 | | fveq2 6191 |
. . . . 5
⊢ (𝑏 = 𝐵 → (#‘𝑏) = (#‘𝐵)) |
| 307 | | ineq1 3807 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝑏 ∩ ∪ 𝐴) = (𝐵 ∩ ∪ 𝐴)) |
| 308 | 307 | fveq2d 6195 |
. . . . 5
⊢ (𝑏 = 𝐵 → (#‘(𝑏 ∩ ∪ 𝐴)) = (#‘(𝐵 ∩ ∪ 𝐴))) |
| 309 | 306, 308 | oveq12d 6668 |
. . . 4
⊢ (𝑏 = 𝐵 → ((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝐴))) = ((#‘𝐵) − (#‘(𝐵 ∩ ∪ 𝐴)))) |
| 310 | | simpl 473 |
. . . . . . . 8
⊢ ((𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴) → 𝑏 = 𝐵) |
| 311 | 310 | ineq1d 3813 |
. . . . . . 7
⊢ ((𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴) → (𝑏 ∩ ∩ 𝑠) = (𝐵 ∩ ∩ 𝑠)) |
| 312 | 311 | fveq2d 6195 |
. . . . . 6
⊢ ((𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴) → (#‘(𝑏 ∩ ∩ 𝑠)) = (#‘(𝐵 ∩ ∩ 𝑠))) |
| 313 | 312 | oveq2d 6666 |
. . . . 5
⊢ ((𝑏 = 𝐵 ∧ 𝑠 ∈ 𝒫 𝐴) → ((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))
= ((-1↑(#‘𝑠))
· (#‘(𝐵 ∩
∩ 𝑠)))) |
| 314 | 313 | sumeq2dv 14433 |
. . . 4
⊢ (𝑏 = 𝐵 → Σ𝑠 ∈ 𝒫 𝐴((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(#‘𝑠)) · (#‘(𝐵 ∩ ∩ 𝑠)))) |
| 315 | 309, 314 | eqeq12d 2637 |
. . 3
⊢ (𝑏 = 𝐵 → (((#‘𝑏) − (#‘(𝑏 ∩ ∪ 𝐴))) = Σ𝑠 ∈ 𝒫 𝐴((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠))) ↔ ((#‘𝐵) − (#‘(𝐵 ∩ ∪ 𝐴)))
= Σ𝑠 ∈ 𝒫
𝐴((-1↑(#‘𝑠)) · (#‘(𝐵 ∩ ∩ 𝑠))))) |
| 316 | 315 | rspccva 3308 |
. 2
⊢
((∀𝑏 ∈
Fin ((#‘𝑏) −
(#‘(𝑏 ∩ ∪ 𝐴)))
= Σ𝑠 ∈ 𝒫
𝐴((-1↑(#‘𝑠)) · (#‘(𝑏 ∩ ∩ 𝑠)))
∧ 𝐵 ∈ Fin) →
((#‘𝐵) −
(#‘(𝐵 ∩ ∪ 𝐴)))
= Σ𝑠 ∈ 𝒫
𝐴((-1↑(#‘𝑠)) · (#‘(𝐵 ∩ ∩ 𝑠)))) |
| 317 | 305, 316 | sylan 488 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) →
((#‘𝐵) −
(#‘(𝐵 ∩ ∪ 𝐴)))
= Σ𝑠 ∈ 𝒫
𝐴((-1↑(#‘𝑠)) · (#‘(𝐵 ∩ ∩ 𝑠)))) |