Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem4 Structured version   Visualization version   GIF version

Theorem wallispilem4 40285
Description: 𝐹 maps to explicit expression for the ratio of two consecutive values of 𝐼. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem4.1 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
wallispilem4.2 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑧)↑𝑛) d𝑧)
wallispilem4.3 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
wallispilem4.4 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
Assertion
Ref Expression
wallispilem4 𝐺 = 𝐻
Distinct variable groups:   𝑧,𝑛   𝑧,𝐹
Allowed substitution hints:   𝐹(𝑘,𝑛)   𝐺(𝑧,𝑘,𝑛)   𝐻(𝑧,𝑘,𝑛)   𝐼(𝑧,𝑘,𝑛)

Proof of Theorem wallispilem4
Dummy variables 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . 7 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
21fveq2d 6195 . . . . . 6 (𝑥 = 1 → (𝐼‘(2 · 𝑥)) = (𝐼‘(2 · 1)))
31oveq1d 6665 . . . . . . 7 (𝑥 = 1 → ((2 · 𝑥) + 1) = ((2 · 1) + 1))
43fveq2d 6195 . . . . . 6 (𝑥 = 1 → (𝐼‘((2 · 𝑥) + 1)) = (𝐼‘((2 · 1) + 1)))
52, 4oveq12d 6668 . . . . 5 (𝑥 = 1 → ((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((𝐼‘(2 · 1)) / (𝐼‘((2 · 1) + 1))))
6 fveq2 6191 . . . . . . 7 (𝑥 = 1 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘1))
76oveq2d 6666 . . . . . 6 (𝑥 = 1 → (1 / (seq1( · , 𝐹)‘𝑥)) = (1 / (seq1( · , 𝐹)‘1)))
87oveq2d 6666 . . . . 5 (𝑥 = 1 → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘1))))
95, 8eqeq12d 2637 . . . 4 (𝑥 = 1 → (((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) ↔ ((𝐼‘(2 · 1)) / (𝐼‘((2 · 1) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘1)))))
10 oveq2 6658 . . . . . . 7 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
1110fveq2d 6195 . . . . . 6 (𝑥 = 𝑦 → (𝐼‘(2 · 𝑥)) = (𝐼‘(2 · 𝑦)))
1210oveq1d 6665 . . . . . . 7 (𝑥 = 𝑦 → ((2 · 𝑥) + 1) = ((2 · 𝑦) + 1))
1312fveq2d 6195 . . . . . 6 (𝑥 = 𝑦 → (𝐼‘((2 · 𝑥) + 1)) = (𝐼‘((2 · 𝑦) + 1)))
1411, 13oveq12d 6668 . . . . 5 (𝑥 = 𝑦 → ((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))))
15 fveq2 6191 . . . . . . 7 (𝑥 = 𝑦 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑦))
1615oveq2d 6666 . . . . . 6 (𝑥 = 𝑦 → (1 / (seq1( · , 𝐹)‘𝑥)) = (1 / (seq1( · , 𝐹)‘𝑦)))
1716oveq2d 6666 . . . . 5 (𝑥 = 𝑦 → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))))
1814, 17eqeq12d 2637 . . . 4 (𝑥 = 𝑦 → (((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) ↔ ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
19 oveq2 6658 . . . . . . 7 (𝑥 = (𝑦 + 1) → (2 · 𝑥) = (2 · (𝑦 + 1)))
2019fveq2d 6195 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐼‘(2 · 𝑥)) = (𝐼‘(2 · (𝑦 + 1))))
2119oveq1d 6665 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((2 · 𝑥) + 1) = ((2 · (𝑦 + 1)) + 1))
2221fveq2d 6195 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐼‘((2 · 𝑥) + 1)) = (𝐼‘((2 · (𝑦 + 1)) + 1)))
2320, 22oveq12d 6668 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))))
24 fveq2 6191 . . . . . . 7 (𝑥 = (𝑦 + 1) → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘(𝑦 + 1)))
2524oveq2d 6666 . . . . . 6 (𝑥 = (𝑦 + 1) → (1 / (seq1( · , 𝐹)‘𝑥)) = (1 / (seq1( · , 𝐹)‘(𝑦 + 1))))
2625oveq2d 6666 . . . . 5 (𝑥 = (𝑦 + 1) → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1)))))
2723, 26eqeq12d 2637 . . . 4 (𝑥 = (𝑦 + 1) → (((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) ↔ ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1))))))
28 oveq2 6658 . . . . . . 7 (𝑥 = 𝑛 → (2 · 𝑥) = (2 · 𝑛))
2928fveq2d 6195 . . . . . 6 (𝑥 = 𝑛 → (𝐼‘(2 · 𝑥)) = (𝐼‘(2 · 𝑛)))
3028oveq1d 6665 . . . . . . 7 (𝑥 = 𝑛 → ((2 · 𝑥) + 1) = ((2 · 𝑛) + 1))
3130fveq2d 6195 . . . . . 6 (𝑥 = 𝑛 → (𝐼‘((2 · 𝑥) + 1)) = (𝐼‘((2 · 𝑛) + 1)))
3229, 31oveq12d 6668 . . . . 5 (𝑥 = 𝑛 → ((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
33 fveq2 6191 . . . . . . 7 (𝑥 = 𝑛 → (seq1( · , 𝐹)‘𝑥) = (seq1( · , 𝐹)‘𝑛))
3433oveq2d 6666 . . . . . 6 (𝑥 = 𝑛 → (1 / (seq1( · , 𝐹)‘𝑥)) = (1 / (seq1( · , 𝐹)‘𝑛)))
3534oveq2d 6666 . . . . 5 (𝑥 = 𝑛 → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
3632, 35eqeq12d 2637 . . . 4 (𝑥 = 𝑛 → (((𝐼‘(2 · 𝑥)) / (𝐼‘((2 · 𝑥) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑥))) ↔ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛)))))
37 2t1e2 11176 . . . . . . 7 (2 · 1) = 2
3837fveq2i 6194 . . . . . 6 (𝐼‘(2 · 1)) = (𝐼‘2)
3937oveq1i 6660 . . . . . . . 8 ((2 · 1) + 1) = (2 + 1)
40 2p1e3 11151 . . . . . . . 8 (2 + 1) = 3
4139, 40eqtri 2644 . . . . . . 7 ((2 · 1) + 1) = 3
4241fveq2i 6194 . . . . . 6 (𝐼‘((2 · 1) + 1)) = (𝐼‘3)
4338, 42oveq12i 6662 . . . . 5 ((𝐼‘(2 · 1)) / (𝐼‘((2 · 1) + 1))) = ((𝐼‘2) / (𝐼‘3))
44 2z 11409 . . . . . . . . 9 2 ∈ ℤ
45 uzid 11702 . . . . . . . . 9 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
4644, 45ax-mp 5 . . . . . . . 8 2 ∈ (ℤ‘2)
47 wallispilem4.2 . . . . . . . . . 10 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑧)↑𝑛) d𝑧)
4847wallispilem2 40283 . . . . . . . . 9 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (2 ∈ (ℤ‘2) → (𝐼‘2) = (((2 − 1) / 2) · (𝐼‘(2 − 2)))))
4948simp3i 1072 . . . . . . . 8 (2 ∈ (ℤ‘2) → (𝐼‘2) = (((2 − 1) / 2) · (𝐼‘(2 − 2))))
5046, 49ax-mp 5 . . . . . . 7 (𝐼‘2) = (((2 − 1) / 2) · (𝐼‘(2 − 2)))
51 2m1e1 11135 . . . . . . . . 9 (2 − 1) = 1
5251oveq1i 6660 . . . . . . . 8 ((2 − 1) / 2) = (1 / 2)
53 2cn 11091 . . . . . . . . . . 11 2 ∈ ℂ
5453subidi 10352 . . . . . . . . . 10 (2 − 2) = 0
5554fveq2i 6194 . . . . . . . . 9 (𝐼‘(2 − 2)) = (𝐼‘0)
5648simp1i 1070 . . . . . . . . 9 (𝐼‘0) = π
5755, 56eqtri 2644 . . . . . . . 8 (𝐼‘(2 − 2)) = π
5852, 57oveq12i 6662 . . . . . . 7 (((2 − 1) / 2) · (𝐼‘(2 − 2))) = ((1 / 2) · π)
59 ax-1cn 9994 . . . . . . . . 9 1 ∈ ℂ
60 2cnne0 11242 . . . . . . . . 9 (2 ∈ ℂ ∧ 2 ≠ 0)
61 picn 24211 . . . . . . . . 9 π ∈ ℂ
62 div32 10705 . . . . . . . . 9 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ π ∈ ℂ) → ((1 / 2) · π) = (1 · (π / 2)))
6359, 60, 61, 62mp3an 1424 . . . . . . . 8 ((1 / 2) · π) = (1 · (π / 2))
64 2ne0 11113 . . . . . . . . . 10 2 ≠ 0
6561, 53, 64divcli 10767 . . . . . . . . 9 (π / 2) ∈ ℂ
6665mulid2i 10043 . . . . . . . 8 (1 · (π / 2)) = (π / 2)
6763, 66eqtri 2644 . . . . . . 7 ((1 / 2) · π) = (π / 2)
6850, 58, 673eqtri 2648 . . . . . 6 (𝐼‘2) = (π / 2)
69 3z 11410 . . . . . . . . 9 3 ∈ ℤ
70 2re 11090 . . . . . . . . . 10 2 ∈ ℝ
71 3re 11094 . . . . . . . . . 10 3 ∈ ℝ
72 2lt3 11195 . . . . . . . . . 10 2 < 3
7370, 71, 72ltleii 10160 . . . . . . . . 9 2 ≤ 3
74 eluz2 11693 . . . . . . . . 9 (3 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3))
7544, 69, 73, 74mpbir3an 1244 . . . . . . . 8 3 ∈ (ℤ‘2)
7647wallispilem2 40283 . . . . . . . . 9 ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (3 ∈ (ℤ‘2) → (𝐼‘3) = (((3 − 1) / 3) · (𝐼‘(3 − 2)))))
7776simp3i 1072 . . . . . . . 8 (3 ∈ (ℤ‘2) → (𝐼‘3) = (((3 − 1) / 3) · (𝐼‘(3 − 2))))
7875, 77ax-mp 5 . . . . . . 7 (𝐼‘3) = (((3 − 1) / 3) · (𝐼‘(3 − 2)))
79 3m1e2 11137 . . . . . . . . . 10 (3 − 1) = 2
8079eqcomi 2631 . . . . . . . . 9 2 = (3 − 1)
8180oveq1i 6660 . . . . . . . 8 (2 / 3) = ((3 − 1) / 3)
82 3cn 11095 . . . . . . . . . . 11 3 ∈ ℂ
8382, 53, 59, 40subaddrii 10370 . . . . . . . . . 10 (3 − 2) = 1
8483fveq2i 6194 . . . . . . . . 9 (𝐼‘(3 − 2)) = (𝐼‘1)
8548simp2i 1071 . . . . . . . . 9 (𝐼‘1) = 2
8684, 85eqtr2i 2645 . . . . . . . 8 2 = (𝐼‘(3 − 2))
8781, 86oveq12i 6662 . . . . . . 7 ((2 / 3) · 2) = (((3 − 1) / 3) · (𝐼‘(3 − 2)))
88 3ne0 11115 . . . . . . . . 9 3 ≠ 0
8953, 82, 88divcli 10767 . . . . . . . 8 (2 / 3) ∈ ℂ
9089, 53mulcomi 10046 . . . . . . 7 ((2 / 3) · 2) = (2 · (2 / 3))
9178, 87, 903eqtr2i 2650 . . . . . 6 (𝐼‘3) = (2 · (2 / 3))
9268, 91oveq12i 6662 . . . . 5 ((𝐼‘2) / (𝐼‘3)) = ((π / 2) / (2 · (2 / 3)))
93 1z 11407 . . . . . . . . 9 1 ∈ ℤ
94 seq1 12814 . . . . . . . . 9 (1 ∈ ℤ → (seq1( · , 𝐹)‘1) = (𝐹‘1))
9593, 94ax-mp 5 . . . . . . . 8 (seq1( · , 𝐹)‘1) = (𝐹‘1)
96 1nn 11031 . . . . . . . . 9 1 ∈ ℕ
97 oveq2 6658 . . . . . . . . . . . . . 14 (𝑘 = 1 → (2 · 𝑘) = (2 · 1))
9897, 37syl6eq 2672 . . . . . . . . . . . . 13 (𝑘 = 1 → (2 · 𝑘) = 2)
9997oveq1d 6665 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((2 · 𝑘) − 1) = ((2 · 1) − 1))
10037oveq1i 6660 . . . . . . . . . . . . . . 15 ((2 · 1) − 1) = (2 − 1)
101100, 51eqtri 2644 . . . . . . . . . . . . . 14 ((2 · 1) − 1) = 1
10299, 101syl6eq 2672 . . . . . . . . . . . . 13 (𝑘 = 1 → ((2 · 𝑘) − 1) = 1)
10398, 102oveq12d 6668 . . . . . . . . . . . 12 (𝑘 = 1 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = (2 / 1))
10453div1i 10753 . . . . . . . . . . . 12 (2 / 1) = 2
105103, 104syl6eq 2672 . . . . . . . . . . 11 (𝑘 = 1 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = 2)
10698oveq1d 6665 . . . . . . . . . . . . 13 (𝑘 = 1 → ((2 · 𝑘) + 1) = (2 + 1))
107106, 40syl6eq 2672 . . . . . . . . . . . 12 (𝑘 = 1 → ((2 · 𝑘) + 1) = 3)
10898, 107oveq12d 6668 . . . . . . . . . . 11 (𝑘 = 1 → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = (2 / 3))
109105, 108oveq12d 6668 . . . . . . . . . 10 (𝑘 = 1 → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (2 · (2 / 3)))
110 wallispilem4.1 . . . . . . . . . 10 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))))
111 ovex 6678 . . . . . . . . . 10 (2 · (2 / 3)) ∈ V
112109, 110, 111fvmpt 6282 . . . . . . . . 9 (1 ∈ ℕ → (𝐹‘1) = (2 · (2 / 3)))
11396, 112ax-mp 5 . . . . . . . 8 (𝐹‘1) = (2 · (2 / 3))
11495, 113eqtr2i 2645 . . . . . . 7 (2 · (2 / 3)) = (seq1( · , 𝐹)‘1)
115114oveq2i 6661 . . . . . 6 ((π / 2) / (2 · (2 / 3))) = ((π / 2) / (seq1( · , 𝐹)‘1))
11653, 89mulcli 10045 . . . . . . . . 9 (2 · (2 / 3)) ∈ ℂ
117113, 116eqeltri 2697 . . . . . . . 8 (𝐹‘1) ∈ ℂ
11895, 117eqeltri 2697 . . . . . . 7 (seq1( · , 𝐹)‘1) ∈ ℂ
11953, 82, 64, 88divne0i 10773 . . . . . . . . 9 (2 / 3) ≠ 0
12053, 89, 64, 119mulne0i 10670 . . . . . . . 8 (2 · (2 / 3)) ≠ 0
121114, 120eqnetrri 2865 . . . . . . 7 (seq1( · , 𝐹)‘1) ≠ 0
12265, 118, 121divreci 10770 . . . . . 6 ((π / 2) / (seq1( · , 𝐹)‘1)) = ((π / 2) · (1 / (seq1( · , 𝐹)‘1)))
123115, 122eqtri 2644 . . . . 5 ((π / 2) / (2 · (2 / 3))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘1)))
12443, 92, 1233eqtri 2648 . . . 4 ((𝐼‘(2 · 1)) / (𝐼‘((2 · 1) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘1)))
125 oveq2 6658 . . . . . . 7 (((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) → (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
126125adantl 482 . . . . . 6 ((𝑦 ∈ ℕ ∧ ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))) → (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
127 2cnd 11093 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 2 ∈ ℂ)
128 nncn 11028 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
12959a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 1 ∈ ℂ)
130127, 128, 129adddid 10064 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = ((2 · 𝑦) + (2 · 1)))
131127mulid1d 10057 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · 1) = 2)
132131oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · 𝑦) + (2 · 1)) = ((2 · 𝑦) + 2))
133130, 132eqtrd 2656 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = ((2 · 𝑦) + 2))
134133oveq1d 6665 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) = (((2 · 𝑦) + 2) − 1))
135127, 128mulcld 10060 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
136135, 127, 129addsubassd 10412 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 2) − 1) = ((2 · 𝑦) + (2 − 1)))
13751a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 − 1) = 1)
138137oveq2d 6666 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + (2 − 1)) = ((2 · 𝑦) + 1))
139134, 136, 1383eqtrd 2660 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) = ((2 · 𝑦) + 1))
140139oveq1d 6665 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) = (((2 · 𝑦) + 1) / (2 · (𝑦 + 1))))
141140oveq1d 6665 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) = ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))))
14279a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (3 − 1) = 2)
143142oveq2d 6666 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + (3 − 1)) = ((2 · 𝑦) + 2))
14482a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 3 ∈ ℂ)
145135, 144, 129addsubassd 10412 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 1) = ((2 · 𝑦) + (3 − 1)))
146143, 145, 1333eqtr4d 2666 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 1) = (2 · (𝑦 + 1)))
147146oveq1d 6665 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) = ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))
148147oveq1d 6665 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2))) = (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2))))
149141, 148oveq12d 6668 . . . . . . . . 9 (𝑦 ∈ ℕ → (((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) / (((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2)))))
15044a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 2 ∈ ℤ)
151 nnz 11399 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
152151peano2zd 11485 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℤ)
153150, 152zmulcld 11488 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℤ)
15470a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 2 ∈ ℝ)
155 nnre 11027 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
156 1red 10055 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 1 ∈ ℝ)
157155, 156readdcld 10069 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℝ)
158 0le2 11111 . . . . . . . . . . . . . . 15 0 ≤ 2
159158a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 ≤ 2)
160 nnnn0 11299 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
161160nn0ge0d 11354 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 0 ≤ 𝑦)
162156, 155addge02d 10616 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (0 ≤ 𝑦 ↔ 1 ≤ (𝑦 + 1)))
163161, 162mpbid 222 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 1 ≤ (𝑦 + 1))
164154, 157, 159, 163lemulge11d 10961 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 2 ≤ (2 · (𝑦 + 1)))
16544eluz1i 11695 . . . . . . . . . . . . 13 ((2 · (𝑦 + 1)) ∈ (ℤ‘2) ↔ ((2 · (𝑦 + 1)) ∈ ℤ ∧ 2 ≤ (2 · (𝑦 + 1))))
166153, 164, 165sylanbrc 698 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ (ℤ‘2))
16747, 166itgsinexp 40170 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝐼‘(2 · (𝑦 + 1))) = ((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘((2 · (𝑦 + 1)) − 2))))
168133oveq1d 6665 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 2) = (((2 · 𝑦) + 2) − 2))
169135, 127pncand 10393 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (((2 · 𝑦) + 2) − 2) = (2 · 𝑦))
170168, 169eqtrd 2656 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 2) = (2 · 𝑦))
171170fveq2d 6195 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝐼‘((2 · (𝑦 + 1)) − 2)) = (𝐼‘(2 · 𝑦)))
172171oveq2d 6666 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘((2 · (𝑦 + 1)) − 2))) = ((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))))
173167, 172eqtrd 2656 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐼‘(2 · (𝑦 + 1))) = ((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))))
174133oveq1d 6665 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) + 1) = (((2 · 𝑦) + 2) + 1))
175135, 127, 129addassd 10062 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 2) + 1) = ((2 · 𝑦) + (2 + 1)))
17640a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 + 1) = 3)
177176oveq2d 6666 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + (2 + 1)) = ((2 · 𝑦) + 3))
178174, 175, 1773eqtrd 2660 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) + 1) = ((2 · 𝑦) + 3))
179178fveq2d 6195 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝐼‘((2 · (𝑦 + 1)) + 1)) = (𝐼‘((2 · 𝑦) + 3)))
180150, 151zmulcld 11488 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℤ)
18169a1i 11 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 3 ∈ ℤ)
182180, 181zaddcld 11486 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ∈ ℤ)
183154, 155remulcld 10070 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ)
18471a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 3 ∈ ℝ)
185183, 184readdcld 10069 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ∈ ℝ)
186 nnge1 11046 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
187154, 155, 159, 186lemulge11d 10961 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 2 ≤ (2 · 𝑦))
188 0re 10040 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
189 3pos 11114 . . . . . . . . . . . . . . . 16 0 < 3
190188, 71, 189ltleii 10160 . . . . . . . . . . . . . . 15 0 ≤ 3
191183, 184addge01d 10615 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (0 ≤ 3 ↔ (2 · 𝑦) ≤ ((2 · 𝑦) + 3)))
192190, 191mpbii 223 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) ≤ ((2 · 𝑦) + 3))
193154, 183, 185, 187, 192letrd 10194 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 2 ≤ ((2 · 𝑦) + 3))
19444eluz1i 11695 . . . . . . . . . . . . 13 (((2 · 𝑦) + 3) ∈ (ℤ‘2) ↔ (((2 · 𝑦) + 3) ∈ ℤ ∧ 2 ≤ ((2 · 𝑦) + 3)))
195182, 193, 194sylanbrc 698 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ∈ (ℤ‘2))
19647, 195itgsinexp 40170 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝐼‘((2 · 𝑦) + 3)) = (((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2))))
197179, 196eqtrd 2656 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐼‘((2 · (𝑦 + 1)) + 1)) = (((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2))))
198173, 197oveq12d 6668 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = (((((2 · (𝑦 + 1)) − 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) / (((((2 · 𝑦) + 3) − 1) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2)))))
199135, 129addcld 10059 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℂ)
200128, 129addcld 10059 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
201127, 200mulcld 10060 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℂ)
20264a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 2 ≠ 0)
203 peano2nn 11032 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
204203nnne0d 11065 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 + 1) ≠ 0)
205127, 200, 202, 204mulne0d 10679 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ≠ 0)
206199, 201, 205divcld 10801 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) ∈ ℂ)
207 2nn0 11309 . . . . . . . . . . . . 13 2 ∈ ℕ0
208207a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 2 ∈ ℕ0)
209208, 160nn0mulcld 11356 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℕ0)
21047wallispilem3 40284 . . . . . . . . . . . 12 ((2 · 𝑦) ∈ ℕ0 → (𝐼‘(2 · 𝑦)) ∈ ℝ+)
211210rpcnd 11874 . . . . . . . . . . 11 ((2 · 𝑦) ∈ ℕ0 → (𝐼‘(2 · 𝑦)) ∈ ℂ)
212209, 211syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐼‘(2 · 𝑦)) ∈ ℂ)
213135, 144addcld 10059 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ∈ ℂ)
214 0red 10041 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 ∈ ℝ)
215 2pos 11112 . . . . . . . . . . . . . . . 16 0 < 2
216215a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 0 < 2)
217 nngt0 11049 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 0 < 𝑦)
218154, 155, 216, 217mulgt0d 10192 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 < (2 · 𝑦))
219184, 189jctir 561 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (3 ∈ ℝ ∧ 0 < 3))
220 elrp 11834 . . . . . . . . . . . . . . . 16 (3 ∈ ℝ+ ↔ (3 ∈ ℝ ∧ 0 < 3))
221219, 220sylibr 224 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 3 ∈ ℝ+)
222183, 221ltaddrpd 11905 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (2 · 𝑦) < ((2 · 𝑦) + 3))
223214, 183, 185, 218, 222lttrd 10198 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 0 < ((2 · 𝑦) + 3))
224223gt0ne0d 10592 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ≠ 0)
225201, 213, 224divcld 10801 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ∈ ℂ)
226201, 213, 205, 224divne0d 10817 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ≠ 0)
227182, 150zsubcld 11487 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 2) ∈ ℤ)
228185, 154subge0d 10617 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (0 ≤ (((2 · 𝑦) + 3) − 2) ↔ 2 ≤ ((2 · 𝑦) + 3)))
229193, 228mpbird 247 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 0 ≤ (((2 · 𝑦) + 3) − 2))
230 elnn0z 11390 . . . . . . . . . . . . . 14 ((((2 · 𝑦) + 3) − 2) ∈ ℕ0 ↔ ((((2 · 𝑦) + 3) − 2) ∈ ℤ ∧ 0 ≤ (((2 · 𝑦) + 3) − 2)))
231227, 229, 230sylanbrc 698 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 2) ∈ ℕ0)
23247wallispilem3 40284 . . . . . . . . . . . . 13 ((((2 · 𝑦) + 3) − 2) ∈ ℕ0 → (𝐼‘(((2 · 𝑦) + 3) − 2)) ∈ ℝ+)
233231, 232syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝐼‘(((2 · 𝑦) + 3) − 2)) ∈ ℝ+)
234233rpcnne0d 11881 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((𝐼‘(((2 · 𝑦) + 3) − 2)) ∈ ℂ ∧ (𝐼‘(((2 · 𝑦) + 3) − 2)) ≠ 0))
235225, 226, 234jca31 557 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ∈ ℂ ∧ ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ≠ 0) ∧ ((𝐼‘(((2 · 𝑦) + 3) − 2)) ∈ ℂ ∧ (𝐼‘(((2 · 𝑦) + 3) − 2)) ≠ 0)))
236 divmuldiv 10725 . . . . . . . . . 10 ((((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) ∈ ℂ ∧ (𝐼‘(2 · 𝑦)) ∈ ℂ) ∧ ((((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ∈ ℂ ∧ ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ≠ 0) ∧ ((𝐼‘(((2 · 𝑦) + 3) − 2)) ∈ ℂ ∧ (𝐼‘(((2 · 𝑦) + 3) − 2)) ≠ 0))) → (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘(((2 · 𝑦) + 3) − 2)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2)))))
237206, 212, 235, 236syl21anc 1325 . . . . . . . . 9 (𝑦 ∈ ℕ → (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘(((2 · 𝑦) + 3) − 2)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) · (𝐼‘(2 · 𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) · (𝐼‘(((2 · 𝑦) + 3) − 2)))))
238149, 198, 2373eqtr4d 2666 . . . . . . . 8 (𝑦 ∈ ℕ → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘(((2 · 𝑦) + 3) − 2)))))
239135, 144, 127addsubassd 10412 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 2) = ((2 · 𝑦) + (3 − 2)))
24083a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (3 − 2) = 1)
241240oveq2d 6666 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · 𝑦) + (3 − 2)) = ((2 · 𝑦) + 1))
242239, 241eqtrd 2656 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · 𝑦) + 3) − 2) = ((2 · 𝑦) + 1))
243242fveq2d 6195 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝐼‘(((2 · 𝑦) + 3) − 2)) = (𝐼‘((2 · 𝑦) + 1)))
244243oveq2d 6666 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝐼‘(2 · 𝑦)) / (𝐼‘(((2 · 𝑦) + 3) − 2))) = ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))))
245244oveq2d 6666 . . . . . . . 8 (𝑦 ∈ ℕ → (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘(((2 · 𝑦) + 3) − 2)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1)))))
246238, 245eqtrd 2656 . . . . . . 7 (𝑦 ∈ ℕ → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1)))))
247246adantr 481 . . . . . 6 ((𝑦 ∈ ℕ ∧ ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))) → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1)))))
248 elnnuz 11724 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ ↔ 𝑦 ∈ (ℤ‘1))
249248biimpi 206 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ (ℤ‘1))
250 seqp1 12816 . . . . . . . . . . . 12 (𝑦 ∈ (ℤ‘1) → (seq1( · , 𝐹)‘(𝑦 + 1)) = ((seq1( · , 𝐹)‘𝑦) · (𝐹‘(𝑦 + 1))))
251249, 250syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (seq1( · , 𝐹)‘(𝑦 + 1)) = ((seq1( · , 𝐹)‘𝑦) · (𝐹‘(𝑦 + 1))))
252110a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))
253 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑦 + 1) → (2 · 𝑘) = (2 · (𝑦 + 1)))
254253oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑦 + 1) → ((2 · 𝑘) − 1) = ((2 · (𝑦 + 1)) − 1))
255253, 254oveq12d 6668 . . . . . . . . . . . . . . 15 (𝑘 = (𝑦 + 1) → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)))
256253oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑦 + 1) → ((2 · 𝑘) + 1) = ((2 · (𝑦 + 1)) + 1))
257253, 256oveq12d 6668 . . . . . . . . . . . . . . 15 (𝑘 = (𝑦 + 1) → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))
258255, 257oveq12d 6668 . . . . . . . . . . . . . 14 (𝑘 = (𝑦 + 1) → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))))
259258adantl 482 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑘 = (𝑦 + 1)) → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))))
260154, 157remulcld 10070 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℝ)
261260, 156resubcld 10458 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) ∈ ℝ)
262 1lt2 11194 . . . . . . . . . . . . . . . . . . 19 1 < 2
263262a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → 1 < 2)
264 nnrp 11842 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
265156, 264ltaddrp2d 11906 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → 1 < (𝑦 + 1))
266154, 157, 263, 265mulgt1d 10960 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 1 < (2 · (𝑦 + 1)))
267156, 266gtned 10172 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ≠ 1)
268201, 129, 267subne0d 10401 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) − 1) ≠ 0)
269260, 261, 268redivcld 10853 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) ∈ ℝ)
270178, 185eqeltrd 2701 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) + 1) ∈ ℝ)
271178, 224eqnetrd 2861 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) + 1) ≠ 0)
272260, 270, 271redivcld 10853 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)) ∈ ℝ)
273269, 272remulcld 10070 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))) ∈ ℝ)
274252, 259, 203, 273fvmptd 6288 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝐹‘(𝑦 + 1)) = (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))))
275274oveq2d 6666 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((seq1( · , 𝐹)‘𝑦) · (𝐹‘(𝑦 + 1))) = ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))))
276251, 275eqtrd 2656 . . . . . . . . . 10 (𝑦 ∈ ℕ → (seq1( · , 𝐹)‘(𝑦 + 1)) = ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))))
277276oveq2d 6666 . . . . . . . . 9 (𝑦 ∈ ℕ → (1 / (seq1( · , 𝐹)‘(𝑦 + 1))) = (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))))))
278277oveq2d 6666 . . . . . . . 8 (𝑦 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1)))) = ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))))))
279139oveq2d 6666 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) = ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)))
280178oveq2d 6666 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)) = ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))
281279, 280oveq12d 6668 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))) = (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))
282281oveq2d 6666 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))) = ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))
283282oveq2d 6666 . . . . . . . . . 10 (𝑦 ∈ ℕ → (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1))))) = (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))))
284283oveq2d 6666 . . . . . . . . 9 (𝑦 ∈ ℕ → ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))))) = ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))))
285 elfznn 12370 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (1...𝑦) → 𝑤 ∈ ℕ)
286285adantl 482 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ (1...𝑦)) → 𝑤 ∈ ℕ)
287110a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℕ → 𝐹 = (𝑘 ∈ ℕ ↦ (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1)))))
288 oveq2 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑤 → (2 · 𝑘) = (2 · 𝑤))
289288oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑤 → ((2 · 𝑘) − 1) = ((2 · 𝑤) − 1))
290288, 289oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑤 → ((2 · 𝑘) / ((2 · 𝑘) − 1)) = ((2 · 𝑤) / ((2 · 𝑤) − 1)))
291288oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑤 → ((2 · 𝑘) + 1) = ((2 · 𝑤) + 1))
292288, 291oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑤 → ((2 · 𝑘) / ((2 · 𝑘) + 1)) = ((2 · 𝑤) / ((2 · 𝑤) + 1)))
293290, 292oveq12d 6668 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑤 → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑤) / ((2 · 𝑤) − 1)) · ((2 · 𝑤) / ((2 · 𝑤) + 1))))
294293adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℕ ∧ 𝑘 = 𝑤) → (((2 · 𝑘) / ((2 · 𝑘) − 1)) · ((2 · 𝑘) / ((2 · 𝑘) + 1))) = (((2 · 𝑤) / ((2 · 𝑤) − 1)) · ((2 · 𝑤) / ((2 · 𝑤) + 1))))
295 id 22 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℕ → 𝑤 ∈ ℕ)
296 2rp 11837 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ+
297296a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℕ → 2 ∈ ℝ+)
298 nnrp 11842 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℕ → 𝑤 ∈ ℝ+)
299297, 298rpmulcld 11888 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℕ → (2 · 𝑤) ∈ ℝ+)
30070a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℕ → 2 ∈ ℝ)
301 nnre 11027 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℕ → 𝑤 ∈ ℝ)
302300, 301remulcld 10070 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → (2 · 𝑤) ∈ ℝ)
303 1red 10055 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → 1 ∈ ℝ)
304302, 303resubcld 10458 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℕ → ((2 · 𝑤) − 1) ∈ ℝ)
305 nnge1 11046 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℕ → 1 ≤ 𝑤)
306 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ ℕ → 𝑤 ∈ ℂ)
307306mulid2d 10058 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ ℕ → (1 · 𝑤) = 𝑤)
308303, 300, 298ltmul1d 11913 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ ℕ → (1 < 2 ↔ (1 · 𝑤) < (2 · 𝑤)))
309262, 308mpbii 223 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ ℕ → (1 · 𝑤) < (2 · 𝑤))
310307, 309eqbrtrrd 4677 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ℕ → 𝑤 < (2 · 𝑤))
311303, 301, 302, 305, 310lelttrd 10195 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → 1 < (2 · 𝑤))
312303, 302posdifd 10614 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → (1 < (2 · 𝑤) ↔ 0 < ((2 · 𝑤) − 1)))
313311, 312mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℕ → 0 < ((2 · 𝑤) − 1))
314304, 313elrpd 11869 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℕ → ((2 · 𝑤) − 1) ∈ ℝ+)
315299, 314rpdivcld 11889 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℕ → ((2 · 𝑤) / ((2 · 𝑤) − 1)) ∈ ℝ+)
316158a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → 0 ≤ 2)
317298rpge0d 11876 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ℕ → 0 ≤ 𝑤)
318300, 301, 316, 317mulge0d 10604 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ℕ → 0 ≤ (2 · 𝑤))
319302, 318ge0p1rpd 11902 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℕ → ((2 · 𝑤) + 1) ∈ ℝ+)
320299, 319rpdivcld 11889 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℕ → ((2 · 𝑤) / ((2 · 𝑤) + 1)) ∈ ℝ+)
321315, 320rpmulcld 11888 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℕ → (((2 · 𝑤) / ((2 · 𝑤) − 1)) · ((2 · 𝑤) / ((2 · 𝑤) + 1))) ∈ ℝ+)
322287, 294, 295, 321fvmptd 6288 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℕ → (𝐹𝑤) = (((2 · 𝑤) / ((2 · 𝑤) − 1)) · ((2 · 𝑤) / ((2 · 𝑤) + 1))))
323322, 321eqeltrd 2701 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℕ → (𝐹𝑤) ∈ ℝ+)
324286, 323syl 17 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ (1...𝑦)) → (𝐹𝑤) ∈ ℝ+)
325 rpmulcl 11855 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑤 · 𝑧) ∈ ℝ+)
326325adantl 482 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑤 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑤 · 𝑧) ∈ ℝ+)
327249, 324, 326seqcl 12821 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (seq1( · , 𝐹)‘𝑦) ∈ ℝ+)
328327rpcnne0d 11881 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((seq1( · , 𝐹)‘𝑦) ∈ ℂ ∧ (seq1( · , 𝐹)‘𝑦) ≠ 0))
329296a1i 11 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 2 ∈ ℝ+)
330155, 161ge0p1rpd 11902 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℝ+)
331329, 330rpmulcld 11888 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℝ+)
332154, 155, 159, 161mulge0d 10604 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 0 ≤ (2 · 𝑦))
333183, 332ge0p1rpd 11902 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℝ+)
334331, 333rpdivcld 11889 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) ∈ ℝ+)
335329, 264rpmulcld 11888 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
336335, 221rpaddcld 11887 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → ((2 · 𝑦) + 3) ∈ ℝ+)
337331, 336rpdivcld 11889 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)) ∈ ℝ+)
338334, 337rpmulcld 11888 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ∈ ℝ+)
339338rpcnne0d 11881 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ∈ ℂ ∧ (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ≠ 0))
340 divdiv1 10736 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ ((seq1( · , 𝐹)‘𝑦) ∈ ℂ ∧ (seq1( · , 𝐹)‘𝑦) ≠ 0) ∧ ((((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ∈ ℂ ∧ (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ≠ 0)) → ((1 / (seq1( · , 𝐹)‘𝑦)) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))))
341129, 328, 339, 340syl3anc 1326 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((1 / (seq1( · , 𝐹)‘𝑦)) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))))
342341eqcomd 2628 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))) = ((1 / (seq1( · , 𝐹)‘𝑦)) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))
343342oveq2d 6666 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))) = ((π / 2) · ((1 / (seq1( · , 𝐹)‘𝑦)) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))))
34465a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (π / 2) ∈ ℂ)
345327rpcnd 11874 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (seq1( · , 𝐹)‘𝑦) ∈ ℂ)
346327rpne0d 11877 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (seq1( · , 𝐹)‘𝑦) ≠ 0)
347345, 346reccld 10794 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 / (seq1( · , 𝐹)‘𝑦)) ∈ ℂ)
348338rpcnd 11874 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ∈ ℂ)
349338rpne0d 11877 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ≠ 0)
350344, 347, 348, 349divassd 10836 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = ((π / 2) · ((1 / (seq1( · , 𝐹)‘𝑦)) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))))
351139, 268eqnetrrd 2862 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ≠ 0)
352201, 199, 201, 213, 351, 224divmuldivd 10842 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) = (((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) / (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3))))
353352oveq2d 6666 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) / (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)))))
354344, 347mulcld 10060 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) ∈ ℂ)
355201, 201mulcld 10060 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) ∈ ℂ)
356199, 213mulcld 10060 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) ∈ ℂ)
357201, 201, 205, 205mulne0d 10679 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) ≠ 0)
358199, 213, 351, 224mulne0d 10679 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) ≠ 0)
359354, 355, 356, 357, 358divdiv2d 10833 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) / (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)))) = ((((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3))) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1)))))
360354, 356, 355, 357divassd 10836 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3))) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1)))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))))))
361359, 360eqtrd 2656 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))) / (((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))))))
362199, 201, 201, 213, 205, 224, 205divdivdivd 10848 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) = ((((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1)))))
363362eqcomd 2628 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1)))) = ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))))
364363oveq2d 6666 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) · ((2 · 𝑦) + 3)) / ((2 · (𝑦 + 1)) · (2 · (𝑦 + 1))))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))
365353, 361, 3643eqtrd 2660 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) / (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))
366343, 350, 3653eqtr2d 2662 . . . . . . . . 9 (𝑦 ∈ ℕ → ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · 𝑦) + 1)) · ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))) = (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))))
36761a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → π ∈ ℂ)
368367halfcld 11277 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (π / 2) ∈ ℂ)
369368, 347mulcld 10060 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) ∈ ℂ)
370206, 225, 226divcld 10801 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) ∈ ℂ)
371369, 370mulcomd 10061 . . . . . . . . 9 (𝑦 ∈ ℕ → (((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) · ((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
372284, 366, 3713eqtrd 2660 . . . . . . . 8 (𝑦 ∈ ℕ → ((π / 2) · (1 / ((seq1( · , 𝐹)‘𝑦) · (((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) − 1)) · ((2 · (𝑦 + 1)) / ((2 · (𝑦 + 1)) + 1)))))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
373278, 372eqtrd 2656 . . . . . . 7 (𝑦 ∈ ℕ → ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
374373adantr 481 . . . . . 6 ((𝑦 ∈ ℕ ∧ ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))) → ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1)))) = (((((2 · 𝑦) + 1) / (2 · (𝑦 + 1))) / ((2 · (𝑦 + 1)) / ((2 · 𝑦) + 3))) · ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))))
375126, 247, 3743eqtr4d 2666 . . . . 5 ((𝑦 ∈ ℕ ∧ ((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦)))) → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1)))))
376375ex 450 . . . 4 (𝑦 ∈ ℕ → (((𝐼‘(2 · 𝑦)) / (𝐼‘((2 · 𝑦) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑦))) → ((𝐼‘(2 · (𝑦 + 1))) / (𝐼‘((2 · (𝑦 + 1)) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘(𝑦 + 1))))))
3779, 18, 27, 36, 124, 376nnind 11038 . . 3 (𝑛 ∈ ℕ → ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))) = ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
378377mpteq2ia 4740 . 2 (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
379 wallispilem4.3 . 2 𝐺 = (𝑛 ∈ ℕ ↦ ((𝐼‘(2 · 𝑛)) / (𝐼‘((2 · 𝑛) + 1))))
380 wallispilem4.4 . 2 𝐻 = (𝑛 ∈ ℕ ↦ ((π / 2) · (1 / (seq1( · , 𝐹)‘𝑛))))
381378, 379, 3803eqtr4i 2654 1 𝐺 = 𝐻
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  0cn0 11292  cz 11377  cuz 11687  +crp 11832  (,)cioo 12175  ...cfz 12326  seqcseq 12801  cexp 12860  sincsin 14794  πcpi 14797  citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631
This theorem is referenced by:  wallispilem5  40286
  Copyright terms: Public domain W3C validator