Proof of Theorem chpmat0d
| Step | Hyp | Ref
| Expression |
| 1 | | 0fin 8188 |
. . . 4
⊢ ∅
∈ Fin |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝑅 ∈ Ring → ∅
∈ Fin) |
| 3 | | id 22 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) |
| 4 | | 0ex 4790 |
. . . . 5
⊢ ∅
∈ V |
| 5 | 4 | snid 4208 |
. . . 4
⊢ ∅
∈ {∅} |
| 6 | | mat0dimbas0 20272 |
. . . 4
⊢ (𝑅 ∈ Ring →
(Base‘(∅ Mat 𝑅)) = {∅}) |
| 7 | 5, 6 | syl5eleqr 2708 |
. . 3
⊢ (𝑅 ∈ Ring → ∅
∈ (Base‘(∅ Mat 𝑅))) |
| 8 | | chpmat0.c |
. . . 4
⊢ 𝐶 = (∅ CharPlyMat 𝑅) |
| 9 | | eqid 2622 |
. . . 4
⊢ (∅
Mat 𝑅) = (∅ Mat 𝑅) |
| 10 | | eqid 2622 |
. . . 4
⊢
(Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅)) |
| 11 | | eqid 2622 |
. . . 4
⊢
(Poly1‘𝑅) = (Poly1‘𝑅) |
| 12 | | eqid 2622 |
. . . 4
⊢ (∅
Mat (Poly1‘𝑅)) = (∅ Mat
(Poly1‘𝑅)) |
| 13 | | eqid 2622 |
. . . 4
⊢ (∅
maDet (Poly1‘𝑅)) = (∅ maDet
(Poly1‘𝑅)) |
| 14 | | eqid 2622 |
. . . 4
⊢
(-g‘(∅ Mat (Poly1‘𝑅))) =
(-g‘(∅ Mat (Poly1‘𝑅))) |
| 15 | | eqid 2622 |
. . . 4
⊢
(var1‘𝑅) = (var1‘𝑅) |
| 16 | | eqid 2622 |
. . . 4
⊢ (
·𝑠 ‘(∅ Mat
(Poly1‘𝑅))) = ( ·𝑠
‘(∅ Mat (Poly1‘𝑅))) |
| 17 | | eqid 2622 |
. . . 4
⊢ (∅
matToPolyMat 𝑅) = (∅
matToPolyMat 𝑅) |
| 18 | | eqid 2622 |
. . . 4
⊢
(1r‘(∅ Mat (Poly1‘𝑅))) =
(1r‘(∅ Mat (Poly1‘𝑅))) |
| 19 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | chpmatval 20636 |
. . 3
⊢ ((∅
∈ Fin ∧ 𝑅 ∈
Ring ∧ ∅ ∈ (Base‘(∅ Mat 𝑅))) → (𝐶‘∅) = ((∅ maDet
(Poly1‘𝑅))‘(((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅)))) |
| 20 | 2, 3, 7, 19 | syl3anc 1326 |
. 2
⊢ (𝑅 ∈ Ring → (𝐶‘∅) = ((∅
maDet (Poly1‘𝑅))‘(((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅)))) |
| 21 | 11 | ply1ring 19618 |
. . . 4
⊢ (𝑅 ∈ Ring →
(Poly1‘𝑅)
∈ Ring) |
| 22 | | mdet0pr 20398 |
. . . . 5
⊢
((Poly1‘𝑅) ∈ Ring → (∅ maDet
(Poly1‘𝑅))
= {〈∅, (1r‘(Poly1‘𝑅))〉}) |
| 23 | 22 | fveq1d 6193 |
. . . 4
⊢
((Poly1‘𝑅) ∈ Ring → ((∅ maDet
(Poly1‘𝑅))‘(((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({〈∅,
(1r‘(Poly1‘𝑅))〉}‘(((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅)))) |
| 24 | 21, 23 | syl 17 |
. . 3
⊢ (𝑅 ∈ Ring → ((∅
maDet (Poly1‘𝑅))‘(((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({〈∅,
(1r‘(Poly1‘𝑅))〉}‘(((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅)))) |
| 25 | 12 | mat0dimid 20274 |
. . . . . . . . . 10
⊢
((Poly1‘𝑅) ∈ Ring →
(1r‘(∅ Mat (Poly1‘𝑅))) = ∅) |
| 26 | 21, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘(∅ Mat (Poly1‘𝑅))) = ∅) |
| 27 | 26 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅)))) = ((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))∅)) |
| 28 | | eqid 2622 |
. . . . . . . . . 10
⊢
(Base‘(Poly1‘𝑅)) =
(Base‘(Poly1‘𝑅)) |
| 29 | 15, 11, 28 | vr1cl 19587 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(var1‘𝑅)
∈ (Base‘(Poly1‘𝑅))) |
| 30 | 12 | mat0dimscm 20275 |
. . . . . . . . 9
⊢
(((Poly1‘𝑅) ∈ Ring ∧
(var1‘𝑅)
∈ (Base‘(Poly1‘𝑅))) → ((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))∅) = ∅) |
| 31 | 21, 29, 30 | syl2anc 693 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))∅) = ∅) |
| 32 | 27, 31 | eqtrd 2656 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅)))) = ∅) |
| 33 | | d0mat2pmat 20543 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → ((∅
matToPolyMat 𝑅)‘∅) = ∅) |
| 34 | 32, 33 | oveq12d 6668 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(((var1‘𝑅)( ·𝑠
‘(∅ Mat (Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅)) =
(∅(-g‘(∅ Mat (Poly1‘𝑅)))∅)) |
| 35 | 12 | matring 20249 |
. . . . . . . . 9
⊢ ((∅
∈ Fin ∧ (Poly1‘𝑅) ∈ Ring) → (∅ Mat
(Poly1‘𝑅))
∈ Ring) |
| 36 | 1, 21, 35 | sylancr 695 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (∅ Mat
(Poly1‘𝑅))
∈ Ring) |
| 37 | | ringgrp 18552 |
. . . . . . . 8
⊢ ((∅
Mat (Poly1‘𝑅)) ∈ Ring → (∅ Mat
(Poly1‘𝑅))
∈ Grp) |
| 38 | 36, 37 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (∅ Mat
(Poly1‘𝑅))
∈ Grp) |
| 39 | | mat0dimbas0 20272 |
. . . . . . . . 9
⊢
((Poly1‘𝑅) ∈ Ring → (Base‘(∅
Mat (Poly1‘𝑅))) = {∅}) |
| 40 | 21, 39 | syl 17 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘(∅ Mat (Poly1‘𝑅))) = {∅}) |
| 41 | 5, 40 | syl5eleqr 2708 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → ∅
∈ (Base‘(∅ Mat (Poly1‘𝑅)))) |
| 42 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘(∅ Mat (Poly1‘𝑅))) = (Base‘(∅ Mat
(Poly1‘𝑅))) |
| 43 | | eqid 2622 |
. . . . . . . 8
⊢
(0g‘(∅ Mat (Poly1‘𝑅))) =
(0g‘(∅ Mat (Poly1‘𝑅))) |
| 44 | 42, 43, 14 | grpsubid 17499 |
. . . . . . 7
⊢
(((∅ Mat (Poly1‘𝑅)) ∈ Grp ∧ ∅ ∈
(Base‘(∅ Mat (Poly1‘𝑅)))) →
(∅(-g‘(∅ Mat (Poly1‘𝑅)))∅) =
(0g‘(∅ Mat (Poly1‘𝑅)))) |
| 45 | 38, 41, 44 | syl2anc 693 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(∅(-g‘(∅ Mat (Poly1‘𝑅)))∅) =
(0g‘(∅ Mat (Poly1‘𝑅)))) |
| 46 | 34, 45 | eqtrd 2656 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(((var1‘𝑅)( ·𝑠
‘(∅ Mat (Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅)) =
(0g‘(∅ Mat (Poly1‘𝑅)))) |
| 47 | 46 | fveq2d 6195 |
. . . 4
⊢ (𝑅 ∈ Ring →
({〈∅, (1r‘(Poly1‘𝑅))〉}‘(((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅))) = ({〈∅,
(1r‘(Poly1‘𝑅))〉}‘(0g‘(∅
Mat (Poly1‘𝑅))))) |
| 48 | 12 | mat0dim0 20273 |
. . . . . . 7
⊢
((Poly1‘𝑅) ∈ Ring →
(0g‘(∅ Mat (Poly1‘𝑅))) = ∅) |
| 49 | 21, 48 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(0g‘(∅ Mat (Poly1‘𝑅))) = ∅) |
| 50 | 49 | fveq2d 6195 |
. . . . 5
⊢ (𝑅 ∈ Ring →
({〈∅, (1r‘(Poly1‘𝑅))〉}‘(0g‘(∅
Mat (Poly1‘𝑅)))) = ({〈∅,
(1r‘(Poly1‘𝑅))〉}‘∅)) |
| 51 | | fvex 6201 |
. . . . . 6
⊢
(1r‘(Poly1‘𝑅)) ∈ V |
| 52 | 4, 51 | fvsn 6446 |
. . . . 5
⊢
({〈∅, (1r‘(Poly1‘𝑅))〉}‘∅) =
(1r‘(Poly1‘𝑅)) |
| 53 | 50, 52 | syl6eq 2672 |
. . . 4
⊢ (𝑅 ∈ Ring →
({〈∅, (1r‘(Poly1‘𝑅))〉}‘(0g‘(∅
Mat (Poly1‘𝑅)))) =
(1r‘(Poly1‘𝑅))) |
| 54 | 47, 53 | eqtrd 2656 |
. . 3
⊢ (𝑅 ∈ Ring →
({〈∅, (1r‘(Poly1‘𝑅))〉}‘(((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅))) =
(1r‘(Poly1‘𝑅))) |
| 55 | 24, 54 | eqtrd 2656 |
. 2
⊢ (𝑅 ∈ Ring → ((∅
maDet (Poly1‘𝑅))‘(((var1‘𝑅)(
·𝑠 ‘(∅ Mat
(Poly1‘𝑅)))(1r‘(∅ Mat
(Poly1‘𝑅))))(-g‘(∅ Mat
(Poly1‘𝑅)))((∅ matToPolyMat 𝑅)‘∅))) =
(1r‘(Poly1‘𝑅))) |
| 56 | 20, 55 | eqtrd 2656 |
1
⊢ (𝑅 ∈ Ring → (𝐶‘∅) =
(1r‘(Poly1‘𝑅))) |