MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheibor Structured version   Visualization version   GIF version

Theorem cnheibor 22754
Description: Heine-Borel theorem for complex numbers. A subset of is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2 𝐽 = (TopOpen‘ℂfld)
cnheibor.3 𝑇 = (𝐽t 𝑋)
Assertion
Ref Expression
cnheibor (𝑋 ⊆ ℂ → (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑇   𝐽,𝑟,𝑥   𝑋,𝑟,𝑥

Proof of Theorem cnheibor
Dummy variables 𝑧 𝑢 𝑓 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . . 6 𝐽 = (TopOpen‘ℂfld)
21cnfldhaus 22588 . . . . 5 𝐽 ∈ Haus
32a1i 11 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝐽 ∈ Haus)
4 simpl 473 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ⊆ ℂ)
5 cnheibor.3 . . . . 5 𝑇 = (𝐽t 𝑋)
6 simpr 477 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑇 ∈ Comp)
75, 6syl5eqelr 2706 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝐽t 𝑋) ∈ Comp)
81cnfldtopon 22586 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
98toponunii 20721 . . . . 5 ℂ = 𝐽
109hauscmp 21210 . . . 4 ((𝐽 ∈ Haus ∧ 𝑋 ⊆ ℂ ∧ (𝐽t 𝑋) ∈ Comp) → 𝑋 ∈ (Clsd‘𝐽))
113, 4, 7, 10syl3anc 1326 . . 3 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ∈ (Clsd‘𝐽))
121cnfldtop 22587 . . . . . . . . . . 11 𝐽 ∈ Top
139restuni 20966 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = (𝐽t 𝑋))
1412, 4, 13sylancr 695 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 = (𝐽t 𝑋))
155unieqi 4445 . . . . . . . . . 10 𝑇 = (𝐽t 𝑋)
1614, 15syl6eqr 2674 . . . . . . . . 9 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 = 𝑇)
1716eleq2d 2687 . . . . . . . 8 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝑥𝑋𝑥 𝑇))
1817biimpar 502 . . . . . . 7 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥 𝑇) → 𝑥𝑋)
1912a1i 11 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝐽 ∈ Top)
20 cnex 10017 . . . . . . . . . . . 12 ℂ ∈ V
21 ssexg 4804 . . . . . . . . . . . 12 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
224, 20, 21sylancl 694 . . . . . . . . . . 11 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ∈ V)
2322adantr 481 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑋 ∈ V)
24 cnxmet 22576 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
2524a1i 11 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (abs ∘ − ) ∈ (∞Met‘ℂ))
26 0cnd 10033 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 0 ∈ ℂ)
274sselda 3603 . . . . . . . . . . . . . 14 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ ℂ)
2827abscld 14175 . . . . . . . . . . . . 13 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (abs‘𝑥) ∈ ℝ)
29 peano2re 10209 . . . . . . . . . . . . 13 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
3028, 29syl 17 . . . . . . . . . . . 12 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ)
3130rexrd 10089 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ*)
321cnfldtopn 22585 . . . . . . . . . . . 12 𝐽 = (MetOpen‘(abs ∘ − ))
3332blopn 22305 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ ((abs‘𝑥) + 1) ∈ ℝ*) → (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽)
3425, 26, 31, 33syl3anc 1326 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽)
35 elrestr 16089 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑋 ∈ V ∧ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ (𝐽t 𝑋))
3619, 23, 34, 35syl3anc 1326 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ (𝐽t 𝑋))
3736, 5syl6eleqr 2712 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ 𝑇)
38 0cn 10032 . . . . . . . . . . . . . 14 0 ∈ ℂ
39 eqid 2622 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
4039cnmetdval 22574 . . . . . . . . . . . . . 14 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0(abs ∘ − )𝑥) = (abs‘(0 − 𝑥)))
4138, 40mpan 706 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (0(abs ∘ − )𝑥) = (abs‘(0 − 𝑥)))
42 df-neg 10269 . . . . . . . . . . . . . . 15 -𝑥 = (0 − 𝑥)
4342fveq2i 6194 . . . . . . . . . . . . . 14 (abs‘-𝑥) = (abs‘(0 − 𝑥))
44 absneg 14017 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (abs‘-𝑥) = (abs‘𝑥))
4543, 44syl5eqr 2670 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (abs‘(0 − 𝑥)) = (abs‘𝑥))
4641, 45eqtrd 2656 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (0(abs ∘ − )𝑥) = (abs‘𝑥))
4727, 46syl 17 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(abs ∘ − )𝑥) = (abs‘𝑥))
4828ltp1d 10954 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (abs‘𝑥) < ((abs‘𝑥) + 1))
4947, 48eqbrtrd 4675 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))
50 elbl 22193 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ ((abs‘𝑥) + 1) ∈ ℝ*) → (𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))))
5125, 26, 31, 50syl3anc 1326 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))))
5227, 49, 51mpbir2and 957 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)))
53 simpr 477 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥𝑋)
5452, 53elind 3798 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋))
5527absge0d 14183 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 0 ≤ (abs‘𝑥))
5628, 55ge0p1rpd 11902 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ+)
57 eqid 2622 . . . . . . . . 9 ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)
58 oveq2 6658 . . . . . . . . . . . 12 (𝑟 = ((abs‘𝑥) + 1) → (0(ball‘(abs ∘ − ))𝑟) = (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)))
5958ineq1d 3813 . . . . . . . . . . 11 (𝑟 = ((abs‘𝑥) + 1) → ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋))
6059eqeq2d 2632 . . . . . . . . . 10 (𝑟 = ((abs‘𝑥) + 1) → (((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)))
6160rspcev 3309 . . . . . . . . 9 ((((abs‘𝑥) + 1) ∈ ℝ+ ∧ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
6256, 57, 61sylancl 694 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
63 eleq2 2690 . . . . . . . . . 10 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (𝑥𝑢𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)))
64 eqeq1 2626 . . . . . . . . . . 11 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6564rexbidv 3052 . . . . . . . . . 10 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6663, 65anbi12d 747 . . . . . . . . 9 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → ((𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)) ↔ (𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∧ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))))
6766rspcev 3309 . . . . . . . 8 ((((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ 𝑇 ∧ (𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∧ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6837, 54, 62, 67syl12anc 1324 . . . . . . 7 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6918, 68syldan 487 . . . . . 6 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥 𝑇) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
7069ralrimiva 2966 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∀𝑥 𝑇𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
71 eqid 2622 . . . . . 6 𝑇 = 𝑇
72 oveq2 6658 . . . . . . . 8 (𝑟 = (𝑓𝑢) → (0(ball‘(abs ∘ − ))𝑟) = (0(ball‘(abs ∘ − ))(𝑓𝑢)))
7372ineq1d 3813 . . . . . . 7 (𝑟 = (𝑓𝑢) → ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
7473eqeq2d 2632 . . . . . 6 (𝑟 = (𝑓𝑢) → (𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)))
7571, 74cmpcovf 21194 . . . . 5 ((𝑇 ∈ Comp ∧ ∀𝑥 𝑇𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))) → ∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))))
766, 70, 75syl2anc 693 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))))
7716ad4antr 768 . . . . . . . . . . . . . 14 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑋 = 𝑇)
78 simpllr 799 . . . . . . . . . . . . . 14 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑇 = 𝑠)
7977, 78eqtrd 2656 . . . . . . . . . . . . 13 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑋 = 𝑠)
8079eleq2d 2687 . . . . . . . . . . . 12 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋𝑥 𝑠))
81 eluni2 4440 . . . . . . . . . . . 12 (𝑥 𝑠 ↔ ∃𝑧𝑠 𝑥𝑧)
8280, 81syl6bb 276 . . . . . . . . . . 11 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋 ↔ ∃𝑧𝑠 𝑥𝑧))
83 elssuni 4467 . . . . . . . . . . . . . . . . . 18 (𝑧𝑠𝑧 𝑠)
8483ad2antrl 764 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 𝑠)
8579adantr 481 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑋 = 𝑠)
8684, 85sseqtr4d 3642 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧𝑋)
87 simp-6l 810 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑋 ⊆ ℂ)
8886, 87sstrd 3613 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 ⊆ ℂ)
89 simprr 796 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥𝑧)
9088, 89sseldd 3604 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ ℂ)
9190abscld 14175 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) ∈ ℝ)
92 simplrl 800 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑟 ∈ ℝ)
93 simprl 794 . . . . . . . . . . . . . . . . 17 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑓:𝑠⟶ℝ+)
9493ad2antrr 762 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑓:𝑠⟶ℝ+)
95 simprl 794 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧𝑠)
9694, 95ffvelrnd 6360 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ+)
9796rpred 11872 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ)
9890, 46syl 17 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (0(abs ∘ − )𝑥) = (abs‘𝑥))
99 inss1 3833 . . . . . . . . . . . . . . . . . 18 ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋) ⊆ (0(ball‘(abs ∘ − ))(𝑓𝑧))
100 simprr 796 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
101100ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
102 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧𝑢 = 𝑧)
103 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑧 → (𝑓𝑢) = (𝑓𝑧))
104103oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑧 → (0(ball‘(abs ∘ − ))(𝑓𝑢)) = (0(ball‘(abs ∘ − ))(𝑓𝑧)))
105104ineq1d 3813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
106102, 105eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧 → (𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋) ↔ 𝑧 = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋)))
107106rspcv 3305 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑠 → (∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋) → 𝑧 = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋)))
10895, 101, 107sylc 65 . . . . . . . . . . . . . . . . . . 19 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
10989, 108eleqtrd 2703 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
11099, 109sseldi 3601 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)))
11124a1i 11 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
112 0cnd 10033 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 0 ∈ ℂ)
11396rpxrd 11873 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ*)
114 elbl 22193 . . . . . . . . . . . . . . . . . 18 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (𝑓𝑧) ∈ ℝ*) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧))))
115111, 112, 113, 114syl3anc 1326 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧))))
116110, 115mpbid 222 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧)))
117116simprd 479 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (0(abs ∘ − )𝑥) < (𝑓𝑧))
11898, 117eqbrtrrd 4677 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) < (𝑓𝑧))
119 simplrr 801 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
120103breq1d 4663 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑧 → ((𝑓𝑢) ≤ 𝑟 ↔ (𝑓𝑧) ≤ 𝑟))
121120rspcv 3305 . . . . . . . . . . . . . . 15 (𝑧𝑠 → (∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟 → (𝑓𝑧) ≤ 𝑟))
12295, 119, 121sylc 65 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ≤ 𝑟)
12391, 97, 92, 118, 122ltletrd 10197 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) < 𝑟)
12491, 92, 123ltled 10185 . . . . . . . . . . . 12 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) ≤ 𝑟)
125124rexlimdvaa 3032 . . . . . . . . . . 11 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (∃𝑧𝑠 𝑥𝑧 → (abs‘𝑥) ≤ 𝑟))
12682, 125sylbid 230 . . . . . . . . . 10 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋 → (abs‘𝑥) ≤ 𝑟))
127126ralrimiv 2965 . . . . . . . . 9 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
128 inss2 3834 . . . . . . . . . . 11 (𝒫 𝑇 ∩ Fin) ⊆ Fin
129 simpllr 799 . . . . . . . . . . 11 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑠 ∈ (𝒫 𝑇 ∩ Fin))
130128, 129sseldi 3601 . . . . . . . . . 10 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑠 ∈ Fin)
131 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝑓:𝑠⟶ℝ+𝑢𝑠) → (𝑓𝑢) ∈ ℝ+)
132131rpred 11872 . . . . . . . . . . . 12 ((𝑓:𝑠⟶ℝ+𝑢𝑠) → (𝑓𝑢) ∈ ℝ)
133132ralrimiva 2966 . . . . . . . . . . 11 (𝑓:𝑠⟶ℝ+ → ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ)
134133ad2antrl 764 . . . . . . . . . 10 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ)
135 fimaxre3 10970 . . . . . . . . . 10 ((𝑠 ∈ Fin ∧ ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
136130, 134, 135syl2anc 693 . . . . . . . . 9 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
137127, 136reximddv 3018 . . . . . . . 8 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
138137ex 450 . . . . . . 7 ((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) → ((𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
139138exlimdv 1861 . . . . . 6 ((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) → (∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
140139expimpd 629 . . . . 5 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) → (( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
141140rexlimdva 3031 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
14276, 141mpd 15 . . 3 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
14311, 142jca 554 . 2 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
144 eqid 2622 . . . . . 6 (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧)))
145 eqid 2622 . . . . . 6 ((𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) “ ((-𝑟[,]𝑟) × (-𝑟[,]𝑟))) = ((𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) “ ((-𝑟[,]𝑟) × (-𝑟[,]𝑟)))
1461, 5, 144, 145cnheiborlem 22753 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑟 ∈ ℝ ∧ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)) → 𝑇 ∈ Comp)
147146rexlimdvaa 3032 . . . 4 (𝑋 ∈ (Clsd‘𝐽) → (∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟𝑇 ∈ Comp))
148147imp 445 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟) → 𝑇 ∈ Comp)
149148adantl 482 . 2 ((𝑋 ⊆ ℂ ∧ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)) → 𝑇 ∈ Comp)
150143, 149impbida 877 1 (𝑋 ⊆ ℂ → (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   class class class wbr 4653   × cxp 5112  cima 5117  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267  +crp 11832  [,]cicc 12178  abscabs 13974  t crest 16081  TopOpenctopn 16082  ∞Metcxmt 19731  ballcbl 19733  fldccnfld 19746  Topctop 20698  Clsdccld 20820  Hauscha 21112  Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cls 20825  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681
This theorem is referenced by:  cnllycmp  22755  cncmet  23119  ftalem3  24801
  Copyright terms: Public domain W3C validator