MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logneg2 Structured version   Visualization version   GIF version

Theorem logneg2 24361
Description: The logarithm of the negative of a number with positive imaginary part is i · π less than the original. (Compare logneg 24334.) (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
logneg2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘-𝐴) = ((log‘𝐴) − (i · π)))

Proof of Theorem logneg2
StepHypRef Expression
1 imcl 13851 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2 gt0ne0 10493 . . . . . . . 8 (((ℑ‘𝐴) ∈ ℝ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
31, 2sylan 488 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘𝐴) ≠ 0)
4 fveq2 6191 . . . . . . . . 9 (𝐴 = 0 → (ℑ‘𝐴) = (ℑ‘0))
5 im0 13893 . . . . . . . . 9 (ℑ‘0) = 0
64, 5syl6eq 2672 . . . . . . . 8 (𝐴 = 0 → (ℑ‘𝐴) = 0)
76necon3i 2826 . . . . . . 7 ((ℑ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 24315 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 487 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘𝐴) ∈ ℂ)
11 ax-icn 9995 . . . . . 6 i ∈ ℂ
12 picn 24211 . . . . . 6 π ∈ ℂ
1311, 12mulcli 10045 . . . . 5 (i · π) ∈ ℂ
14 efsub 14830 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → (exp‘((log‘𝐴) − (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i · π))))
1510, 13, 14sylancl 694 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘((log‘𝐴) − (i · π))) = ((exp‘(log‘𝐴)) / (exp‘(i · π))))
16 eflog 24323 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
178, 16syldan 487 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(log‘𝐴)) = 𝐴)
18 efipi 24225 . . . . . 6 (exp‘(i · π)) = -1
1918a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘(i · π)) = -1)
2017, 19oveq12d 6668 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((exp‘(log‘𝐴)) / (exp‘(i · π))) = (𝐴 / -1))
21 ax-1cn 9994 . . . . . . 7 1 ∈ ℂ
22 ax-1ne0 10005 . . . . . . 7 1 ≠ 0
23 divneg2 10749 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(𝐴 / 1) = (𝐴 / -1))
2421, 22, 23mp3an23 1416 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 1) = (𝐴 / -1))
25 div1 10716 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2625negeqd 10275 . . . . . 6 (𝐴 ∈ ℂ → -(𝐴 / 1) = -𝐴)
2724, 26eqtr3d 2658 . . . . 5 (𝐴 ∈ ℂ → (𝐴 / -1) = -𝐴)
2827adantr 481 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (𝐴 / -1) = -𝐴)
2915, 20, 283eqtrd 2660 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (exp‘((log‘𝐴) − (i · π))) = -𝐴)
3029fveq2d 6195 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘(exp‘((log‘𝐴) − (i · π)))) = (log‘-𝐴))
31 subcl 10280 . . . . 5 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → ((log‘𝐴) − (i · π)) ∈ ℂ)
3210, 13, 31sylancl 694 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((log‘𝐴) − (i · π)) ∈ ℂ)
33 argimgt0 24358 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (0(,)π))
34 eliooord 12233 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ (0(,)π) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
3533, 34syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < π))
3635simpld 475 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → 0 < (ℑ‘(log‘𝐴)))
37 imcl 13851 . . . . . . . . 9 ((log‘𝐴) ∈ ℂ → (ℑ‘(log‘𝐴)) ∈ ℝ)
3810, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
39 pire 24210 . . . . . . . . 9 π ∈ ℝ
4039renegcli 10342 . . . . . . . 8 -π ∈ ℝ
41 ltaddpos2 10519 . . . . . . . 8 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ∈ ℝ) → (0 < (ℑ‘(log‘𝐴)) ↔ -π < ((ℑ‘(log‘𝐴)) + -π)))
4238, 40, 41sylancl 694 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 < (ℑ‘(log‘𝐴)) ↔ -π < ((ℑ‘(log‘𝐴)) + -π)))
4336, 42mpbid 222 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) + -π))
4438recnd 10068 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
45 negsub 10329 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℂ ∧ π ∈ ℂ) → ((ℑ‘(log‘𝐴)) + -π) = ((ℑ‘(log‘𝐴)) − π))
4644, 12, 45sylancl 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) + -π) = ((ℑ‘(log‘𝐴)) − π))
4743, 46breqtrd 4679 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < ((ℑ‘(log‘𝐴)) − π))
48 imsub 13875 . . . . . . 7 (((log‘𝐴) ∈ ℂ ∧ (i · π) ∈ ℂ) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))))
4910, 13, 48sylancl 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))))
50 reim 13849 . . . . . . . . 9 (π ∈ ℂ → (ℜ‘π) = (ℑ‘(i · π)))
5112, 50ax-mp 5 . . . . . . . 8 (ℜ‘π) = (ℑ‘(i · π))
52 rere 13862 . . . . . . . . 9 (π ∈ ℝ → (ℜ‘π) = π)
5339, 52ax-mp 5 . . . . . . . 8 (ℜ‘π) = π
5451, 53eqtr3i 2646 . . . . . . 7 (ℑ‘(i · π)) = π
5554oveq2i 6661 . . . . . 6 ((ℑ‘(log‘𝐴)) − (ℑ‘(i · π))) = ((ℑ‘(log‘𝐴)) − π)
5649, 55syl6eq 2672 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) = ((ℑ‘(log‘𝐴)) − π))
5747, 56breqtrrd 4681 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → -π < (ℑ‘((log‘𝐴) − (i · π))))
58 resubcl 10345 . . . . . . 7 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘𝐴)) − π) ∈ ℝ)
5938, 39, 58sylancl 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ∈ ℝ)
6039a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → π ∈ ℝ)
61 0re 10040 . . . . . . . 8 0 ∈ ℝ
62 pipos 24212 . . . . . . . 8 0 < π
6361, 39, 62ltleii 10160 . . . . . . 7 0 ≤ π
64 subge02 10544 . . . . . . . 8 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴))))
6538, 39, 64sylancl 694 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (0 ≤ π ↔ ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴))))
6663, 65mpbii 223 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ≤ (ℑ‘(log‘𝐴)))
67 logimcl 24316 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
688, 67syldan 487 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
6968simprd 479 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
7059, 38, 60, 66, 69letrd 10194 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((ℑ‘(log‘𝐴)) − π) ≤ π)
7156, 70eqbrtrd 4675 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (ℑ‘((log‘𝐴) − (i · π))) ≤ π)
72 ellogrn 24306 . . . 4 (((log‘𝐴) − (i · π)) ∈ ran log ↔ (((log‘𝐴) − (i · π)) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐴) − (i · π))) ∧ (ℑ‘((log‘𝐴) − (i · π))) ≤ π))
7332, 57, 71, 72syl3anbrc 1246 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → ((log‘𝐴) − (i · π)) ∈ ran log)
74 logef 24328 . . 3 (((log‘𝐴) − (i · π)) ∈ ran log → (log‘(exp‘((log‘𝐴) − (i · π)))) = ((log‘𝐴) − (i · π)))
7573, 74syl 17 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘(exp‘((log‘𝐴) − (i · π)))) = ((log‘𝐴) − (i · π)))
7630, 75eqtr3d 2658 1 ((𝐴 ∈ ℂ ∧ 0 < (ℑ‘𝐴)) → (log‘-𝐴) = ((log‘𝐴) − (i · π)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  ran crn 5115  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  (,)cioo 12175  cre 13837  cim 13838  expce 14792  πcpi 14797  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  atanlogsublem  24642
  Copyright terms: Public domain W3C validator