MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumparts Structured version   Visualization version   Unicode version

Theorem fsumparts 14538
Description: Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fsumparts.b  |-  ( k  =  j  ->  ( A  =  B  /\  V  =  W )
)
fsumparts.c  |-  ( k  =  ( j  +  1 )  ->  ( A  =  C  /\  V  =  X )
)
fsumparts.d  |-  ( k  =  M  ->  ( A  =  D  /\  V  =  Y )
)
fsumparts.e  |-  ( k  =  N  ->  ( A  =  E  /\  V  =  Z )
)
fsumparts.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumparts.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fsumparts.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  V  e.  CC )
Assertion
Ref Expression
fsumparts  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( ( ( E  x.  Z )  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X ) ) )
Distinct variable groups:    A, j    B, k    C, k    D, k   
k, E    j, V    k, W    j, k, M   
j, N, k    ph, j,
k    k, X    k, Y    k, Z
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)    V( k)    W( j)    X( j)    Y( j)    Z( j)

Proof of Theorem fsumparts
StepHypRef Expression
1 sum0 14452 . . . 4  |-  sum_ j  e.  (/)  ( B  x.  ( X  -  W
) )  =  0
2 0m0e0 11130 . . . 4  |-  ( 0  -  0 )  =  0
31, 2eqtr4i 2647 . . 3  |-  sum_ j  e.  (/)  ( B  x.  ( X  -  W
) )  =  ( 0  -  0 )
4 simpr 477 . . . . . 6  |-  ( (
ph  /\  N  =  M )  ->  N  =  M )
54oveq2d 6666 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  ( M..^ M ) )
6 fzo0 12492 . . . . 5  |-  ( M..^ M )  =  (/)
75, 6syl6eq 2672 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  (/) )
87sumeq1d 14431 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  sum_ j  e.  (/)  ( B  x.  ( X  -  W
) ) )
9 fsumparts.1 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
10 eluzfz1 12348 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
119, 10syl 17 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
12 eqtr3 2643 . . . . . . . . . . . 12  |-  ( ( k  =  M  /\  N  =  M )  ->  k  =  N )
13 fsumparts.e . . . . . . . . . . . 12  |-  ( k  =  N  ->  ( A  =  E  /\  V  =  Z )
)
14 oveq12 6659 . . . . . . . . . . . 12  |-  ( ( A  =  E  /\  V  =  Z )  ->  ( A  x.  V
)  =  ( E  x.  Z ) )
1512, 13, 143syl 18 . . . . . . . . . . 11  |-  ( ( k  =  M  /\  N  =  M )  ->  ( A  x.  V
)  =  ( E  x.  Z ) )
16 fsumparts.d . . . . . . . . . . . . 13  |-  ( k  =  M  ->  ( A  =  D  /\  V  =  Y )
)
17 oveq12 6659 . . . . . . . . . . . . 13  |-  ( ( A  =  D  /\  V  =  Y )  ->  ( A  x.  V
)  =  ( D  x.  Y ) )
1816, 17syl 17 . . . . . . . . . . . 12  |-  ( k  =  M  ->  ( A  x.  V )  =  ( D  x.  Y ) )
1918adantr 481 . . . . . . . . . . 11  |-  ( ( k  =  M  /\  N  =  M )  ->  ( A  x.  V
)  =  ( D  x.  Y ) )
2015, 19eqeq12d 2637 . . . . . . . . . 10  |-  ( ( k  =  M  /\  N  =  M )  ->  ( ( A  x.  V )  =  ( A  x.  V )  <-> 
( E  x.  Z
)  =  ( D  x.  Y ) ) )
2120pm5.74da 723 . . . . . . . . 9  |-  ( k  =  M  ->  (
( N  =  M  ->  ( A  x.  V )  =  ( A  x.  V ) )  <->  ( N  =  M  ->  ( E  x.  Z )  =  ( D  x.  Y ) ) ) )
22 eqidd 2623 . . . . . . . . 9  |-  ( N  =  M  ->  ( A  x.  V )  =  ( A  x.  V ) )
2321, 22vtoclg 3266 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  ( N  =  M  ->  ( E  x.  Z )  =  ( D  x.  Y ) ) )
2423imp 445 . . . . . . 7  |-  ( ( M  e.  ( M ... N )  /\  N  =  M )  ->  ( E  x.  Z
)  =  ( D  x.  Y ) )
2511, 24sylan 488 . . . . . 6  |-  ( (
ph  /\  N  =  M )  ->  ( E  x.  Z )  =  ( D  x.  Y ) )
2625oveq1d 6665 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  (
( E  x.  Z
)  -  ( D  x.  Y ) )  =  ( ( D  x.  Y )  -  ( D  x.  Y
) ) )
27 fsumparts.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
2827ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
2916simpld 475 . . . . . . . . . . 11  |-  ( k  =  M  ->  A  =  D )
3029eleq1d 2686 . . . . . . . . . 10  |-  ( k  =  M  ->  ( A  e.  CC  <->  D  e.  CC ) )
3130rspcv 3305 . . . . . . . . 9  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  D  e.  CC ) )
3211, 28, 31sylc 65 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
33 fsumparts.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  V  e.  CC )
3433ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) V  e.  CC )
3516simprd 479 . . . . . . . . . . 11  |-  ( k  =  M  ->  V  =  Y )
3635eleq1d 2686 . . . . . . . . . 10  |-  ( k  =  M  ->  ( V  e.  CC  <->  Y  e.  CC ) )
3736rspcv 3305 . . . . . . . . 9  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) V  e.  CC  ->  Y  e.  CC ) )
3811, 34, 37sylc 65 . . . . . . . 8  |-  ( ph  ->  Y  e.  CC )
3932, 38mulcld 10060 . . . . . . 7  |-  ( ph  ->  ( D  x.  Y
)  e.  CC )
4039subidd 10380 . . . . . 6  |-  ( ph  ->  ( ( D  x.  Y )  -  ( D  x.  Y )
)  =  0 )
4140adantr 481 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  (
( D  x.  Y
)  -  ( D  x.  Y ) )  =  0 )
4226, 41eqtrd 2656 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  (
( E  x.  Z
)  -  ( D  x.  Y ) )  =  0 )
437sumeq1d 14431 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  sum_ j  e.  (/)  ( ( C  -  B )  x.  X ) )
44 sum0 14452 . . . . 5  |-  sum_ j  e.  (/)  ( ( C  -  B )  x.  X )  =  0
4543, 44syl6eq 2672 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  0 )
4642, 45oveq12d 6668 . . 3  |-  ( (
ph  /\  N  =  M )  ->  (
( ( E  x.  Z )  -  ( D  x.  Y )
)  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
) )  =  ( 0  -  0 ) )
473, 8, 463eqtr4a 2682 . 2  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  ( ( ( E  x.  Z
)  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X ) ) )
48 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
49 eluzel2 11692 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
509, 49syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
5150adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
52 fzp1ss 12392 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
5351, 52syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 ) ... N )  C_  ( M ... N ) )
5453sselda 3603 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
5527, 33mulcld 10060 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( A  x.  V )  e.  CC )
5655adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... N
) )  ->  ( A  x.  V )  e.  CC )
5754, 56syldan 487 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A  x.  V )  e.  CC )
5813, 14syl 17 . . . . . . . . 9  |-  ( k  =  N  ->  ( A  x.  V )  =  ( E  x.  Z ) )
5948, 57, 58fsumm1 14480 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( A  x.  V )  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) ( A  x.  V
)  +  ( E  x.  Z ) ) )
60 eluzelz 11697 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
619, 60syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ZZ )
6261adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ZZ )
63 fzoval 12471 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
6462, 63syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
6551zcnd 11483 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  CC )
66 ax-1cn 9994 . . . . . . . . . . . . 13  |-  1  e.  CC
67 pncan 10287 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
6865, 66, 67sylancl 694 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )  -  1 )  =  M )
6968oveq1d 6665 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
( M  +  1 )  -  1 ) ... ( N  - 
1 ) )  =  ( M ... ( N  -  1 ) ) )
7064, 69eqtr4d 2659 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( ( ( M  + 
1 )  -  1 ) ... ( N  -  1 ) ) )
7170sumeq1d 14431 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  sum_ j  e.  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) ) ( C  x.  X ) )
72 1zzd 11408 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  1  e.  ZZ )
7351peano2zd 11485 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  e.  ZZ )
74 fsumparts.c . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( A  =  C  /\  V  =  X )
)
75 oveq12 6659 . . . . . . . . . . 11  |-  ( ( A  =  C  /\  V  =  X )  ->  ( A  x.  V
)  =  ( C  x.  X ) )
7674, 75syl 17 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  ( A  x.  V )  =  ( C  x.  X ) )
7772, 73, 62, 57, 76fsumshftm 14513 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( A  x.  V )  =  sum_ j  e.  ( (
( M  +  1 )  -  1 ) ... ( N  - 
1 ) ) ( C  x.  X ) )
7871, 77eqtr4d 2659 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( A  x.  V ) )
79 fzoval 12471 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( M  +  1 )..^ N )  =  ( ( M  + 
1 ) ... ( N  -  1 ) ) )
8062, 79syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
8180sumeq1d 14431 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
)  =  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) ( A  x.  V ) )
8281oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( E  x.  Z
) )  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) ( A  x.  V
)  +  ( E  x.  Z ) ) )
8359, 78, 823eqtr4d 2666 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( E  x.  Z
) ) )
84 fzofi 12773 . . . . . . . . . 10  |-  ( ( M  +  1 )..^ N )  e.  Fin
8584a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  e.  Fin )
86 uzid 11702 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
87 peano2uz 11741 . . . . . . . . . . . 12  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
88 fzoss1 12495 . . . . . . . . . . . 12  |-  ( ( M  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( M  +  1 )..^ N )  C_  ( M..^ N ) )
8951, 86, 87, 884syl 19 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  C_  ( M..^ N ) )
9089sselda 3603 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  k  e.  ( M..^ N ) )
91 elfzofz 12485 . . . . . . . . . . . 12  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( M ... N ) )
9291, 55sylan2 491 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A  x.  V )  e.  CC )
9392adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M..^ N ) )  ->  ( A  x.  V )  e.  CC )
9490, 93syldan 487 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  ( A  x.  V )  e.  CC )
9585, 94fsumcl 14464 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
)  e.  CC )
96 eluzfz2 12349 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
979, 96syl 17 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( M ... N ) )
9813simpld 475 . . . . . . . . . . . . 13  |-  ( k  =  N  ->  A  =  E )
9998eleq1d 2686 . . . . . . . . . . . 12  |-  ( k  =  N  ->  ( A  e.  CC  <->  E  e.  CC ) )
10099rspcv 3305 . . . . . . . . . . 11  |-  ( N  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  E  e.  CC ) )
10197, 28, 100sylc 65 . . . . . . . . . 10  |-  ( ph  ->  E  e.  CC )
10213simprd 479 . . . . . . . . . . . . 13  |-  ( k  =  N  ->  V  =  Z )
103102eleq1d 2686 . . . . . . . . . . . 12  |-  ( k  =  N  ->  ( V  e.  CC  <->  Z  e.  CC ) )
104103rspcv 3305 . . . . . . . . . . 11  |-  ( N  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) V  e.  CC  ->  Z  e.  CC ) )
10597, 34, 104sylc 65 . . . . . . . . . 10  |-  ( ph  ->  Z  e.  CC )
106101, 105mulcld 10060 . . . . . . . . 9  |-  ( ph  ->  ( E  x.  Z
)  e.  CC )
107106adantr 481 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( E  x.  Z )  e.  CC )
10895, 107addcomd 10238 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( E  x.  Z
) )  =  ( ( E  x.  Z
)  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) )
10983, 108eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  ( ( E  x.  Z )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) )
110109oveq1d 6665 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) ( C  x.  X )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X ) )  =  ( ( ( E  x.  Z )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
111 fzofzp1 12565 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
11274simpld 475 . . . . . . . . . . . 12  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
113112eleq1d 2686 . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( A  e.  CC  <->  C  e.  CC ) )
114113rspccva 3308 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... N ) A  e.  CC  /\  ( j  +  1 )  e.  ( M ... N ) )  ->  C  e.  CC )
11528, 111, 114syl2an 494 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  C  e.  CC )
116 elfzofz 12485 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( M ... N ) )
117 fsumparts.b . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( A  =  B  /\  V  =  W )
)
118117simpld 475 . . . . . . . . . . . 12  |-  ( k  =  j  ->  A  =  B )
119118eleq1d 2686 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( A  e.  CC  <->  B  e.  CC ) )
120119rspccva 3308 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... N ) A  e.  CC  /\  j  e.  ( M ... N ) )  ->  B  e.  CC )
12128, 116, 120syl2an 494 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  B  e.  CC )
12274simprd 479 . . . . . . . . . . . 12  |-  ( k  =  ( j  +  1 )  ->  V  =  X )
123122eleq1d 2686 . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( V  e.  CC  <->  X  e.  CC ) )
124123rspccva 3308 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... N ) V  e.  CC  /\  ( j  +  1 )  e.  ( M ... N ) )  ->  X  e.  CC )
12534, 111, 124syl2an 494 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  X  e.  CC )
126115, 121, 125subdird 10487 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( ( C  -  B )  x.  X )  =  ( ( C  x.  X
)  -  ( B  x.  X ) ) )
127126sumeq2dv 14433 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X )  =  sum_ j  e.  ( M..^ N ) ( ( C  x.  X
)  -  ( B  x.  X ) ) )
128 fzofi 12773 . . . . . . . . 9  |-  ( M..^ N )  e.  Fin
129128a1i 11 . . . . . . . 8  |-  ( ph  ->  ( M..^ N )  e.  Fin )
130115, 125mulcld 10060 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( C  x.  X )  e.  CC )
131121, 125mulcld 10060 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( B  x.  X )  e.  CC )
132129, 130, 131fsumsub 14520 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( C  x.  X
)  -  ( B  x.  X ) )  =  ( sum_ j  e.  ( M..^ N ) ( C  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
133127, 132eqtrd 2656 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X )  =  ( sum_ j  e.  ( M..^ N ) ( C  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
134133adantr 481 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  ( sum_ j  e.  ( M..^ N ) ( C  x.  X )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X ) ) )
135129, 131fsumcl 14464 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  X )  e.  CC )
136135adantr 481 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  X
)  e.  CC )
137107, 136, 95subsub3d 10422 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) )  =  ( ( ( E  x.  Z )  + 
sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
138110, 134, 1373eqtr4d 2666 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) ) )
139138oveq2d 6666 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
( E  x.  Z
)  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X ) )  =  ( ( ( E  x.  Z
)  -  ( D  x.  Y ) )  -  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) ) ) )
14039adantr 481 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( D  x.  Y )  e.  CC )
141136, 95subcld 10392 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  e.  CC )
142107, 140, 141nnncan1d 10426 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
( E  x.  Z
)  -  ( D  x.  Y ) )  -  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) ) )  =  ( ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) )  -  ( D  x.  Y )
) )
14395, 140addcomd 10238 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y
) )  =  ( ( D  x.  Y
)  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) )
144 eluzp1m1 11711 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
14550, 144sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
14664eleq2d 2687 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( k  e.  ( M..^ N )  <-> 
k  e.  ( M ... ( N  - 
1 ) ) ) )
147146biimpar 502 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  k  e.  ( M..^ N ) )
148147, 93syldan 487 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( A  x.  V )  e.  CC )
149145, 148, 18fsum1p 14482 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) ( A  x.  V )  =  ( ( D  x.  Y
)  +  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) ( A  x.  V ) ) )
15064sumeq1d 14431 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) ( A  x.  V
)  =  sum_ k  e.  ( M ... ( N  -  1 ) ) ( A  x.  V ) )
15181oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( D  x.  Y )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  =  ( ( D  x.  Y )  +  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) ( A  x.  V
) ) )
152149, 150, 1513eqtr4d 2666 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) ( A  x.  V
)  =  ( ( D  x.  Y )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) )
153143, 152eqtr4d 2659 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y
) )  =  sum_ k  e.  ( M..^ N ) ( A  x.  V ) )
154 oveq12 6659 . . . . . . . 8  |-  ( ( A  =  B  /\  V  =  W )  ->  ( A  x.  V
)  =  ( B  x.  W ) )
155117, 154syl 17 . . . . . . 7  |-  ( k  =  j  ->  ( A  x.  V )  =  ( B  x.  W ) )
156155cbvsumv 14426 . . . . . 6  |-  sum_ k  e.  ( M..^ N ) ( A  x.  V
)  =  sum_ j  e.  ( M..^ N ) ( B  x.  W
)
157153, 156syl6eq 2672 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y
) )  =  sum_ j  e.  ( M..^ N ) ( B  x.  W ) )
158157oveq2d 6666 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y ) ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  W
) ) )
159136, 95, 140subsub4d 10423 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  ( D  x.  Y ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  ( sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
)  +  ( D  x.  Y ) ) ) )
160117simprd 479 . . . . . . . . . . 11  |-  ( k  =  j  ->  V  =  W )
161160eleq1d 2686 . . . . . . . . . 10  |-  ( k  =  j  ->  ( V  e.  CC  <->  W  e.  CC ) )
162161rspccva 3308 . . . . . . . . 9  |-  ( ( A. k  e.  ( M ... N ) V  e.  CC  /\  j  e.  ( M ... N ) )  ->  W  e.  CC )
16334, 116, 162syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  W  e.  CC )
164121, 125, 163subdid 10486 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( B  x.  ( X  -  W
) )  =  ( ( B  x.  X
)  -  ( B  x.  W ) ) )
165164sumeq2dv 14433 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  sum_ j  e.  ( M..^ N ) ( ( B  x.  X
)  -  ( B  x.  W ) ) )
166121, 163mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( B  x.  W )  e.  CC )
167129, 131, 166fsumsub 14520 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( B  x.  X
)  -  ( B  x.  W ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  W
) ) )
168165, 167eqtrd 2656 . . . . 5  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  W
) ) )
169168adantr 481 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ j  e.  ( M..^ N ) ( B  x.  W ) ) )
170158, 159, 1693eqtr4d 2666 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  ( D  x.  Y ) )  = 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) ) )
171139, 142, 1703eqtrrd 2661 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  ( ( ( E  x.  Z
)  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X ) ) )
172 uzp1 11721 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
1739, 172syl 17 . 2  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
17447, 171, 173mpjaodan 827 1  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( ( ( E  x.  Z )  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  dchrisumlem2  25179  selberg2lem  25239  logdivbnd  25245  pntrsumo1  25254  pntrlog2bndlem2  25267  pntrlog2bndlem4  25269
  Copyright terms: Public domain W3C validator