MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madurid Structured version   Visualization version   GIF version

Theorem madurid 20450
Description: Multiplying a matrix with its adjunct results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
madurid.a 𝐴 = (𝑁 Mat 𝑅)
madurid.b 𝐵 = (Base‘𝐴)
madurid.j 𝐽 = (𝑁 maAdju 𝑅)
madurid.d 𝐷 = (𝑁 maDet 𝑅)
madurid.i 1 = (1r𝐴)
madurid.t · = (.r𝐴)
madurid.s = ( ·𝑠𝐴)
Assertion
Ref Expression
madurid ((𝑀𝐵𝑅 ∈ CRing) → (𝑀 · (𝐽𝑀)) = ((𝐷𝑀) 1 ))

Proof of Theorem madurid
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2 eqid 2622 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2622 . . 3 (.r𝑅) = (.r𝑅)
4 simpr 477 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → 𝑅 ∈ CRing)
5 madurid.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
6 madurid.b . . . . . 6 𝐵 = (Base‘𝐴)
75, 6matrcl 20218 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
87simpld 475 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
98adantr 481 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → 𝑁 ∈ Fin)
105, 2, 6matbas2i 20228 . . . 4 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
1110adantr 481 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
12 madurid.j . . . . . . 7 𝐽 = (𝑁 maAdju 𝑅)
135, 12, 6maduf 20447 . . . . . 6 (𝑅 ∈ CRing → 𝐽:𝐵𝐵)
1413adantl 482 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝐽:𝐵𝐵)
15 simpl 473 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀𝐵)
1614, 15ffvelrnd 6360 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → (𝐽𝑀) ∈ 𝐵)
175, 2, 6matbas2i 20228 . . . 4 ((𝐽𝑀) ∈ 𝐵 → (𝐽𝑀) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
1816, 17syl 17 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → (𝐽𝑀) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
191, 2, 3, 4, 9, 9, 9, 11, 18mamuval 20192 . 2 ((𝑀𝐵𝑅 ∈ CRing) → (𝑀(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐽𝑀)) = (𝑎𝑁, 𝑏𝑁 ↦ (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏))))))
205, 1matmulr 20244 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
218, 20sylan 488 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
22 madurid.t . . . 4 · = (.r𝐴)
2321, 22syl6eqr 2674 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = · )
2423oveqd 6667 . 2 ((𝑀𝐵𝑅 ∈ CRing) → (𝑀(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝐽𝑀)) = (𝑀 · (𝐽𝑀)))
25 madurid.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
26 simp1l 1085 . . . . . 6 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑀𝐵)
27 simp1r 1086 . . . . . 6 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑅 ∈ CRing)
28 elmapi 7879 . . . . . . . . . 10 (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
2911, 28syl 17 . . . . . . . . 9 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
30293ad2ant1 1082 . . . . . . . 8 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
3130adantr 481 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
32 simpl2 1065 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → 𝑎𝑁)
33 simpr 477 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → 𝑐𝑁)
3431, 32, 33fovrnd 6806 . . . . . 6 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑐𝑁) → (𝑎𝑀𝑐) ∈ (Base‘𝑅))
35 simp3 1063 . . . . . 6 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
365, 12, 6, 25, 3, 2, 26, 27, 34, 35madugsum 20449 . . . . 5 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏)))) = (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))))
37 iftrue 4092 . . . . . . . . 9 (𝑎 = 𝑏 → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (𝐷𝑀))
3837adantl 482 . . . . . . . 8 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (𝐷𝑀))
39 ffn 6045 . . . . . . . . . . . . 13 (𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅) → 𝑀 Fn (𝑁 × 𝑁))
4029, 39syl 17 . . . . . . . . . . . 12 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀 Fn (𝑁 × 𝑁))
41 fnov 6768 . . . . . . . . . . . 12 (𝑀 Fn (𝑁 × 𝑁) ↔ 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
4240, 41sylib 208 . . . . . . . . . . 11 ((𝑀𝐵𝑅 ∈ CRing) → 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
4342adantr 481 . . . . . . . . . 10 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
44 equtr2 1954 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑏𝑑 = 𝑏) → 𝑎 = 𝑑)
4544oveq1d 6665 . . . . . . . . . . . . . 14 ((𝑎 = 𝑏𝑑 = 𝑏) → (𝑎𝑀𝑐) = (𝑑𝑀𝑐))
4645ifeq1da 4116 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = if(𝑑 = 𝑏, (𝑑𝑀𝑐), (𝑑𝑀𝑐)))
47 ifid 4125 . . . . . . . . . . . . 13 if(𝑑 = 𝑏, (𝑑𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐)
4846, 47syl6eq 2672 . . . . . . . . . . . 12 (𝑎 = 𝑏 → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐))
4948adantl 482 . . . . . . . . . . 11 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐))
5049mpt2eq3dv 6721 . . . . . . . . . 10 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐))) = (𝑑𝑁, 𝑐𝑁 ↦ (𝑑𝑀𝑐)))
5143, 50eqtr4d 2659 . . . . . . . . 9 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → 𝑀 = (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))
5251fveq2d 6195 . . . . . . . 8 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → (𝐷𝑀) = (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))))
5338, 52eqtr2d 2657 . . . . . . 7 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
54533ad2antl1 1223 . . . . . 6 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
55 eqid 2622 . . . . . . . 8 (0g𝑅) = (0g𝑅)
56 simpl1r 1113 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑅 ∈ CRing)
5793ad2ant1 1082 . . . . . . . . 9 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → 𝑁 ∈ Fin)
5857adantr 481 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑁 ∈ Fin)
5930ad2antrr 762 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
60 simpll2 1101 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → 𝑎𝑁)
61 simpr 477 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → 𝑐𝑁)
6259, 60, 61fovrnd 6806 . . . . . . . 8 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑐𝑁) → (𝑎𝑀𝑐) ∈ (Base‘𝑅))
6330adantr 481 . . . . . . . . . 10 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
6463fovrnda 6805 . . . . . . . . 9 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ (𝑑𝑁𝑐𝑁)) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
65643impb 1260 . . . . . . . 8 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑑𝑁𝑐𝑁) → (𝑑𝑀𝑐) ∈ (Base‘𝑅))
66 simpl3 1066 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑁)
67 simpl2 1065 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑎𝑁)
68 df-ne 2795 . . . . . . . . . . 11 (𝑎𝑏 ↔ ¬ 𝑎 = 𝑏)
6968biimpri 218 . . . . . . . . . 10 𝑎 = 𝑏𝑎𝑏)
7069necomd 2849 . . . . . . . . 9 𝑎 = 𝑏𝑏𝑎)
7170adantl 482 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → 𝑏𝑎)
7225, 2, 55, 56, 58, 62, 65, 66, 67, 71mdetralt2 20415 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))) = (0g𝑅))
73 ifid 4125 . . . . . . . . . . 11 if(𝑑 = 𝑎, (𝑑𝑀𝑐), (𝑑𝑀𝑐)) = (𝑑𝑀𝑐)
74 oveq1 6657 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (𝑑𝑀𝑐) = (𝑎𝑀𝑐))
7574adantl 482 . . . . . . . . . . . 12 (((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑑 = 𝑎) → (𝑑𝑀𝑐) = (𝑎𝑀𝑐))
7675ifeq1da 4116 . . . . . . . . . . 11 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → if(𝑑 = 𝑎, (𝑑𝑀𝑐), (𝑑𝑀𝑐)) = if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))
7773, 76syl5eqr 2670 . . . . . . . . . 10 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝑑𝑀𝑐) = if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))
7877ifeq2d 4105 . . . . . . . . 9 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)) = if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))
7978mpt2eq3dv 6721 . . . . . . . 8 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐))) = (𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))))
8079fveq2d 6195 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), if(𝑑 = 𝑎, (𝑎𝑀𝑐), (𝑑𝑀𝑐))))))
81 iffalse 4095 . . . . . . . 8 𝑎 = 𝑏 → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (0g𝑅))
8281adantl 482 . . . . . . 7 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)) = (0g𝑅))
8372, 80, 823eqtr4d 2666 . . . . . 6 ((((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) ∧ ¬ 𝑎 = 𝑏) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
8454, 83pm2.61dan 832 . . . . 5 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → (𝐷‘(𝑑𝑁, 𝑐𝑁 ↦ if(𝑑 = 𝑏, (𝑎𝑀𝑐), (𝑑𝑀𝑐)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
8536, 84eqtrd 2656 . . . 4 (((𝑀𝐵𝑅 ∈ CRing) ∧ 𝑎𝑁𝑏𝑁) → (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏)))) = if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅)))
8685mpt2eq3dva 6719 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → (𝑎𝑁, 𝑏𝑁 ↦ (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏))))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
87 madurid.i . . . . 5 1 = (1r𝐴)
8887oveq2i 6661 . . . 4 ((𝐷𝑀) 1 ) = ((𝐷𝑀) (1r𝐴))
89 crngring 18558 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
9089adantl 482 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → 𝑅 ∈ Ring)
9125, 5, 6, 2mdetf 20401 . . . . . . 7 (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅))
9291adantl 482 . . . . . 6 ((𝑀𝐵𝑅 ∈ CRing) → 𝐷:𝐵⟶(Base‘𝑅))
9392, 15ffvelrnd 6360 . . . . 5 ((𝑀𝐵𝑅 ∈ CRing) → (𝐷𝑀) ∈ (Base‘𝑅))
94 madurid.s . . . . . 6 = ( ·𝑠𝐴)
955, 2, 94, 55matsc 20256 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝐷𝑀) ∈ (Base‘𝑅)) → ((𝐷𝑀) (1r𝐴)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
969, 90, 93, 95syl3anc 1326 . . . 4 ((𝑀𝐵𝑅 ∈ CRing) → ((𝐷𝑀) (1r𝐴)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
9788, 96syl5eq 2668 . . 3 ((𝑀𝐵𝑅 ∈ CRing) → ((𝐷𝑀) 1 ) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (𝐷𝑀), (0g𝑅))))
9886, 97eqtr4d 2659 . 2 ((𝑀𝐵𝑅 ∈ CRing) → (𝑎𝑁, 𝑏𝑁 ↦ (𝑅 Σg (𝑐𝑁 ↦ ((𝑎𝑀𝑐)(.r𝑅)(𝑐(𝐽𝑀)𝑏))))) = ((𝐷𝑀) 1 ))
9919, 24, 983eqtr3d 2664 1 ((𝑀𝐵𝑅 ∈ CRing) → (𝑀 · (𝐽𝑀)) = ((𝐷𝑀) 1 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  ifcif 4086  cotp 4185  cmpt 4729   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Fincfn 7955  Basecbs 15857  .rcmulr 15942   ·𝑠 cvsca 15945  0gc0g 16100   Σg cgsu 16101  1rcur 18501  Ringcrg 18547  CRingccrg 18548   maMul cmmul 20189   Mat cmat 20213   maDet cmdat 20390   maAdju cmadu 20438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-evpm 17912  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-mdet 20391  df-madu 20440
This theorem is referenced by:  madulid  20451  matinv  20483  cpmadurid  20672  cpmidgsum2  20684
  Copyright terms: Public domain W3C validator