MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mersenne Structured version   Visualization version   GIF version

Theorem mersenne 24952
Description: A Mersenne prime is a prime number of the form 2↑𝑃 − 1. This theorem shows that the 𝑃 in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
mersenne ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)

Proof of Theorem mersenne
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℤ)
2 2nn0 11309 . . . . . . 7 2 ∈ ℕ0
32numexp1 15781 . . . . . 6 (2↑1) = 2
4 df-2 11079 . . . . . 6 2 = (1 + 1)
53, 4eqtri 2644 . . . . 5 (2↑1) = (1 + 1)
6 prmuz2 15408 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ (ℤ‘2))
76adantl 482 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ (ℤ‘2))
8 eluz2b2 11761 . . . . . . . 8 (((2↑𝑃) − 1) ∈ (ℤ‘2) ↔ (((2↑𝑃) − 1) ∈ ℕ ∧ 1 < ((2↑𝑃) − 1)))
98simprbi 480 . . . . . . 7 (((2↑𝑃) − 1) ∈ (ℤ‘2) → 1 < ((2↑𝑃) − 1))
107, 9syl 17 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < ((2↑𝑃) − 1))
11 1red 10055 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℝ)
12 2re 11090 . . . . . . . . 9 2 ∈ ℝ
1312a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ∈ ℝ)
14 2ne0 11113 . . . . . . . . 9 2 ≠ 0
1514a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ≠ 0)
1613, 15, 1reexpclzd 13034 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℝ)
1711, 11, 16ltaddsubd 10627 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((1 + 1) < (2↑𝑃) ↔ 1 < ((2↑𝑃) − 1)))
1810, 17mpbird 247 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 + 1) < (2↑𝑃))
195, 18syl5eqbr 4688 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑1) < (2↑𝑃))
20 1zzd 11408 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℤ)
21 1lt2 11194 . . . . . 6 1 < 2
2221a1i 11 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < 2)
2313, 20, 1, 22ltexp2d 13038 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 < 𝑃 ↔ (2↑1) < (2↑𝑃)))
2419, 23mpbird 247 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < 𝑃)
25 eluz2b1 11759 . . 3 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃))
261, 24, 25sylanbrc 698 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
27 simpllr 799 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℙ)
28 prmnn 15388 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℕ)
2927, 28syl 17 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℕ)
3029nncnd 11036 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℂ)
31 2nn 11185 . . . . . . . . . . 11 2 ∈ ℕ
32 elfzuz 12338 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ (ℤ‘2))
3332ad2antlr 763 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ (ℤ‘2))
34 eluz2nn 11726 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
3533, 34syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℕ)
3635nnnn0d 11351 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℕ0)
37 nnexpcl 12873 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
3831, 36, 37sylancr 695 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℕ)
3938nnzd 11481 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℤ)
40 peano2zm 11420 . . . . . . . . 9 ((2↑𝑘) ∈ ℤ → ((2↑𝑘) − 1) ∈ ℤ)
4139, 40syl 17 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℤ)
4241zred 11482 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℝ)
4342recnd 10068 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℂ)
44 0red 10041 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 ∈ ℝ)
45 1red 10055 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 ∈ ℝ)
46 0lt1 10550 . . . . . . . . . 10 0 < 1
4746a1i 11 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 < 1)
48 eluz2b2 11761 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘2) ↔ (𝑘 ∈ ℕ ∧ 1 < 𝑘))
4948simprbi 480 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
5033, 49syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < 𝑘)
5112a1i 11 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 2 ∈ ℝ)
52 1zzd 11408 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 ∈ ℤ)
53 elfzelz 12342 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ ℤ)
5453ad2antlr 763 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℤ)
5521a1i 11 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < 2)
5651, 52, 54, 55ltexp2d 13038 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘)))
5750, 56mpbid 222 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑1) < (2↑𝑘))
585, 57syl5eqbrr 4689 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 + 1) < (2↑𝑘))
5938nnred 11035 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℝ)
6045, 45, 59ltaddsubd 10627 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((1 + 1) < (2↑𝑘) ↔ 1 < ((2↑𝑘) − 1)))
6158, 60mpbid 222 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < ((2↑𝑘) − 1))
6244, 45, 42, 47, 61lttrd 10198 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 < ((2↑𝑘) − 1))
63 elnnz 11387 . . . . . . . 8 (((2↑𝑘) − 1) ∈ ℕ ↔ (((2↑𝑘) − 1) ∈ ℤ ∧ 0 < ((2↑𝑘) − 1)))
6441, 62, 63sylanbrc 698 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℕ)
6564nnne0d 11065 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ≠ 0)
6630, 43, 65divcan2d 10803 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) = ((2↑𝑃) − 1))
6766, 27eqeltrd 2701 . . . 4 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
68 eluz2b2 11761 . . . . . 6 (((2↑𝑘) − 1) ∈ (ℤ‘2) ↔ (((2↑𝑘) − 1) ∈ ℕ ∧ 1 < ((2↑𝑘) − 1)))
6964, 61, 68sylanbrc 698 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ (ℤ‘2))
7038nncnd 11036 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℂ)
71 ax-1cn 9994 . . . . . . . . . . . 12 1 ∈ ℂ
72 subeq0 10307 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑𝑘) − 1) = 0 ↔ (2↑𝑘) = 1))
7370, 71, 72sylancl 694 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) = 0 ↔ (2↑𝑘) = 1))
7473necon3bid 2838 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) ≠ 0 ↔ (2↑𝑘) ≠ 1))
7565, 74mpbid 222 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ≠ 1)
76 simpr 477 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘𝑃)
77 eluz2nn 11726 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
7826, 77syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ)
7978ad2antrr 762 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℕ)
80 nndivdvds 14989 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ))
8179, 35, 80syl2anc 693 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ))
8276, 81mpbid 222 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℕ)
8382nnnn0d 11351 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℕ0)
8470, 75, 83geoser 14599 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘))))
8516ad2antrr 762 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) ∈ ℝ)
8685recnd 10068 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) ∈ ℂ)
87 negsubdi2 10340 . . . . . . . . . . 11 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑃) − 1) = (1 − (2↑𝑃)))
8886, 71, 87sylancl 694 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑃) − 1) = (1 − (2↑𝑃)))
8979nncnd 11036 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℂ)
9035nncnd 11036 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℂ)
9135nnne0d 11065 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ≠ 0)
9289, 90, 91divcan2d 10803 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘 · (𝑃 / 𝑘)) = 𝑃)
9392oveq2d 6666 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = (2↑𝑃))
9451recnd 10068 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 2 ∈ ℂ)
9594, 83, 36expmuld 13011 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = ((2↑𝑘)↑(𝑃 / 𝑘)))
9693, 95eqtr3d 2658 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) = ((2↑𝑘)↑(𝑃 / 𝑘)))
9796oveq2d 6666 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 − (2↑𝑃)) = (1 − ((2↑𝑘)↑(𝑃 / 𝑘))))
9888, 97eqtrd 2656 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑃) − 1) = (1 − ((2↑𝑘)↑(𝑃 / 𝑘))))
99 negsubdi2 10340 . . . . . . . . . 10 (((2↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑘) − 1) = (1 − (2↑𝑘)))
10070, 71, 99sylancl 694 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑘) − 1) = (1 − (2↑𝑘)))
10198, 100oveq12d 6668 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘))))
10230, 43, 65div2negd 10816 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
10384, 101, 1023eqtr2d 2662 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
104 fzfid 12772 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (0...((𝑃 / 𝑘) − 1)) ∈ Fin)
105 elfznn0 12433 . . . . . . . . 9 (𝑛 ∈ (0...((𝑃 / 𝑘) − 1)) → 𝑛 ∈ ℕ0)
106 zexpcl 12875 . . . . . . . . 9 (((2↑𝑘) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((2↑𝑘)↑𝑛) ∈ ℤ)
10739, 105, 106syl2an 494 . . . . . . . 8 (((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) ∧ 𝑛 ∈ (0...((𝑃 / 𝑘) − 1))) → ((2↑𝑘)↑𝑛) ∈ ℤ)
108104, 107fsumzcl 14466 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) ∈ ℤ)
109103, 108eqeltrrd 2702 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ)
11043mulid2d 10058 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 · ((2↑𝑘) − 1)) = ((2↑𝑘) − 1))
111 2z 11409 . . . . . . . . . . . . . 14 2 ∈ ℤ
112 elfzm11 12411 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 ∈ (2...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃)))
113111, 1, 112sylancr 695 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (𝑘 ∈ (2...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃)))
114113biimpa 501 . . . . . . . . . . . 12 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃))
115114simp3d 1075 . . . . . . . . . . 11 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → 𝑘 < 𝑃)
116115adantr 481 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 < 𝑃)
1171ad2antrr 762 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℤ)
11851, 54, 117, 55ltexp2d 13038 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘 < 𝑃 ↔ (2↑𝑘) < (2↑𝑃)))
119116, 118mpbid 222 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) < (2↑𝑃))
12059, 85, 45, 119ltsub1dd 10639 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) < ((2↑𝑃) − 1))
121110, 120eqbrtrd 4675 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1))
12229nnred 11035 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℝ)
123 ltmuldiv 10896 . . . . . . . 8 ((1 ∈ ℝ ∧ ((2↑𝑃) − 1) ∈ ℝ ∧ (((2↑𝑘) − 1) ∈ ℝ ∧ 0 < ((2↑𝑘) − 1))) → ((1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1) ↔ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
12445, 122, 42, 62, 123syl112anc 1330 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1) ↔ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
125121, 124mpbid 222 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
126 eluz2b1 11759 . . . . . 6 ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2) ↔ ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ ∧ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
127109, 125, 126sylanbrc 698 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2))
128 nprm 15401 . . . . 5 ((((2↑𝑘) − 1) ∈ (ℤ‘2) ∧ (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2)) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
12969, 127, 128syl2anc 693 . . . 4 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
13067, 129pm2.65da 600 . . 3 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → ¬ 𝑘𝑃)
131130ralrimiva 2966 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘𝑃)
132 isprm3 15396 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘𝑃))
13326, 131, 132sylanbrc 698 1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  cexp 12860  Σcsu 14416  cdvds 14983  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-prm 15386
This theorem is referenced by:  perfect1  24953  perfect  24956  lighneal  41528  perfectALTV  41632
  Copyright terms: Public domain W3C validator