MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem17 Structured version   Visualization version   GIF version

Theorem axlowdimlem17 25838
Description: Lemma for axlowdim 25841. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Hypotheses
Ref Expression
axlowdimlem16.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem16.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
axlowdimlem17.3 𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))
axlowdimlem17.4 𝑋 ∈ ℝ
axlowdimlem17.5 𝑌 ∈ ℝ
Assertion
Ref Expression
axlowdimlem17 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)

Proof of Theorem axlowdimlem17
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 uzuzle23 11729 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
21ad2antrr 762 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑁 ∈ (ℤ‘2))
3 fzss2 12381 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (1...2) ⊆ (1...𝑁))
42, 3syl 17 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (1...2) ⊆ (1...𝑁))
5 simpr 477 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...2))
64, 5sseldd 3604 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ∈ (1...𝑁))
7 fznuz 12422 . . . . . . . . . . 11 (𝑖 ∈ (1...2) → ¬ 𝑖 ∈ (ℤ‘(2 + 1)))
87adantl 482 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈ (ℤ‘(2 + 1)))
9 3z 11410 . . . . . . . . . . . . . 14 3 ∈ ℤ
10 uzid 11702 . . . . . . . . . . . . . 14 (3 ∈ ℤ → 3 ∈ (ℤ‘3))
119, 10ax-mp 5 . . . . . . . . . . . . 13 3 ∈ (ℤ‘3)
12 df-3 11080 . . . . . . . . . . . . . 14 3 = (2 + 1)
1312fveq2i 6194 . . . . . . . . . . . . 13 (ℤ‘3) = (ℤ‘(2 + 1))
1411, 13eleqtri 2699 . . . . . . . . . . . 12 3 ∈ (ℤ‘(2 + 1))
15 eleq1 2689 . . . . . . . . . . . 12 (𝑖 = 3 → (𝑖 ∈ (ℤ‘(2 + 1)) ↔ 3 ∈ (ℤ‘(2 + 1))))
1614, 15mpbiri 248 . . . . . . . . . . 11 (𝑖 = 3 → 𝑖 ∈ (ℤ‘(2 + 1)))
1716necon3bi 2820 . . . . . . . . . 10 𝑖 ∈ (ℤ‘(2 + 1)) → 𝑖 ≠ 3)
188, 17syl 17 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ 3)
19 axlowdimlem16.1 . . . . . . . . . 10 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
2019axlowdimlem9 25830 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 3) → (𝑃𝑖) = 0)
216, 18, 20syl2anc 693 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃𝑖) = 0)
22 elfzuz 12338 . . . . . . . . . . . . . 14 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (ℤ‘2))
2322ad2antlr 763 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝐼 ∈ (ℤ‘2))
24 eluzp1p1 11713 . . . . . . . . . . . . 13 (𝐼 ∈ (ℤ‘2) → (𝐼 + 1) ∈ (ℤ‘(2 + 1)))
2523, 24syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ (ℤ‘(2 + 1)))
26 uzss 11708 . . . . . . . . . . . 12 ((𝐼 + 1) ∈ (ℤ‘(2 + 1)) → (ℤ‘(𝐼 + 1)) ⊆ (ℤ‘(2 + 1)))
2725, 26syl 17 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (ℤ‘(𝐼 + 1)) ⊆ (ℤ‘(2 + 1)))
2827, 8ssneldd 3606 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ¬ 𝑖 ∈ (ℤ‘(𝐼 + 1)))
29 eluzelz 11697 . . . . . . . . . . . . . 14 ((𝐼 + 1) ∈ (ℤ‘(2 + 1)) → (𝐼 + 1) ∈ ℤ)
3025, 29syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ ℤ)
31 uzid 11702 . . . . . . . . . . . . 13 ((𝐼 + 1) ∈ ℤ → (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1)))
3230, 31syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1)))
33 eleq1 2689 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → (𝑖 ∈ (ℤ‘(𝐼 + 1)) ↔ (𝐼 + 1) ∈ (ℤ‘(𝐼 + 1))))
3432, 33syl5ibrcom 237 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑖 = (𝐼 + 1) → 𝑖 ∈ (ℤ‘(𝐼 + 1))))
3534necon3bd 2808 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (¬ 𝑖 ∈ (ℤ‘(𝐼 + 1)) → 𝑖 ≠ (𝐼 + 1)))
3628, 35mpd 15 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → 𝑖 ≠ (𝐼 + 1))
37 axlowdimlem16.2 . . . . . . . . . 10 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
3837axlowdimlem12 25833 . . . . . . . . 9 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ (𝐼 + 1)) → (𝑄𝑖) = 0)
396, 36, 38syl2anc 693 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑄𝑖) = 0)
4021, 39eqtr4d 2659 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (𝑃𝑖) = (𝑄𝑖))
4140oveq1d 6665 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → ((𝑃𝑖) − (𝐴𝑖)) = ((𝑄𝑖) − (𝐴𝑖)))
4241oveq1d 6665 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...2)) → (((𝑃𝑖) − (𝐴𝑖))↑2) = (((𝑄𝑖) − (𝐴𝑖))↑2))
4342sumeq2dv 14433 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2))
4419, 37axlowdimlem16 25837 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
45 axlowdimlem17.3 . . . . . . . . . . . . 13 𝐴 = ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))
4645fveq1i 6192 . . . . . . . . . . . 12 (𝐴𝑖) = (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖)
47 axlowdimlem2 25823 . . . . . . . . . . . . 13 ((1...2) ∩ (3...𝑁)) = ∅
48 axlowdimlem17.4 . . . . . . . . . . . . . . . 16 𝑋 ∈ ℝ
49 axlowdimlem17.5 . . . . . . . . . . . . . . . 16 𝑌 ∈ ℝ
5048, 49axlowdimlem4 25825 . . . . . . . . . . . . . . 15 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩}:(1...2)⟶ℝ
51 ffn 6045 . . . . . . . . . . . . . . 15 ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩}:(1...2)⟶ℝ → {⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2))
5250, 51ax-mp 5 . . . . . . . . . . . . . 14 {⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2)
53 axlowdimlem1 25822 . . . . . . . . . . . . . . 15 ((3...𝑁) × {0}):(3...𝑁)⟶ℝ
54 ffn 6045 . . . . . . . . . . . . . . 15 (((3...𝑁) × {0}):(3...𝑁)⟶ℝ → ((3...𝑁) × {0}) Fn (3...𝑁))
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 ((3...𝑁) × {0}) Fn (3...𝑁)
56 fvun2 6270 . . . . . . . . . . . . . 14 (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} Fn (1...2) ∧ ((3...𝑁) × {0}) Fn (3...𝑁) ∧ (((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁))) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5752, 55, 56mp3an12 1414 . . . . . . . . . . . . 13 ((((1...2) ∩ (3...𝑁)) = ∅ ∧ 𝑖 ∈ (3...𝑁)) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5847, 57mpan 706 . . . . . . . . . . . 12 (𝑖 ∈ (3...𝑁) → (({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0}))‘𝑖) = (((3...𝑁) × {0})‘𝑖))
5946, 58syl5eq 2668 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → (𝐴𝑖) = (((3...𝑁) × {0})‘𝑖))
60 c0ex 10034 . . . . . . . . . . . 12 0 ∈ V
6160fvconst2 6469 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → (((3...𝑁) × {0})‘𝑖) = 0)
6259, 61eqtrd 2656 . . . . . . . . . 10 (𝑖 ∈ (3...𝑁) → (𝐴𝑖) = 0)
6362adantl 482 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝐴𝑖) = 0)
6463oveq2d 6666 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) = ((𝑃𝑖) − 0))
6519axlowdimlem7 25828 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
6665ad2antrr 762 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
67 3nn 11186 . . . . . . . . . . . . . 14 3 ∈ ℕ
68 nnuz 11723 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
6967, 68eleqtri 2699 . . . . . . . . . . . . 13 3 ∈ (ℤ‘1)
70 fzss1 12380 . . . . . . . . . . . . 13 (3 ∈ (ℤ‘1) → (3...𝑁) ⊆ (1...𝑁))
7169, 70ax-mp 5 . . . . . . . . . . . 12 (3...𝑁) ⊆ (1...𝑁)
7271sseli 3599 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → 𝑖 ∈ (1...𝑁))
7372adantl 482 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → 𝑖 ∈ (1...𝑁))
74 fveecn 25782 . . . . . . . . . 10 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
7566, 73, 74syl2anc 693 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑃𝑖) ∈ ℂ)
7675subid1d 10381 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − 0) = (𝑃𝑖))
7764, 76eqtrd 2656 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) = (𝑃𝑖))
7877oveq1d 6665 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑃𝑖) − (𝐴𝑖))↑2) = ((𝑃𝑖)↑2))
7978sumeq2dv 14433 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2))
8063oveq2d 6666 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) = ((𝑄𝑖) − 0))
81 eluzge3nn 11730 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
82 2eluzge1 11734 . . . . . . . . . . . . 13 2 ∈ (ℤ‘1)
83 fzss1 12380 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1)))
8482, 83ax-mp 5 . . . . . . . . . . . 12 (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))
8584sseli 3599 . . . . . . . . . . 11 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (1...(𝑁 − 1)))
8637axlowdimlem10 25831 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
8781, 85, 86syl2an 494 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
88 fveecn 25782 . . . . . . . . . 10 ((𝑄 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
8987, 72, 88syl2an 494 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑄𝑖) ∈ ℂ)
9089subid1d 10381 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − 0) = (𝑄𝑖))
9180, 90eqtrd 2656 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) = (𝑄𝑖))
9291oveq1d 6665 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (((𝑄𝑖) − (𝐴𝑖))↑2) = ((𝑄𝑖)↑2))
9392sumeq2dv 14433 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
9444, 79, 933eqtr4d 2666 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2))
9543, 94oveq12d 6668 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2)) = (Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
9647a1i 11 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((1...2) ∩ (3...𝑁)) = ∅)
97 eluzelre 11698 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ)
98 eluzle 11700 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
99 2re 11090 . . . . . . . . . . . 12 2 ∈ ℝ
100 3re 11094 . . . . . . . . . . . 12 3 ∈ ℝ
101 2lt3 11195 . . . . . . . . . . . 12 2 < 3
10299, 100, 101ltleii 10160 . . . . . . . . . . 11 2 ≤ 3
103 letr 10131 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
10499, 100, 103mp3an12 1414 . . . . . . . . . . 11 (𝑁 ∈ ℝ → ((2 ≤ 3 ∧ 3 ≤ 𝑁) → 2 ≤ 𝑁))
105102, 104mpani 712 . . . . . . . . . 10 (𝑁 ∈ ℝ → (3 ≤ 𝑁 → 2 ≤ 𝑁))
10697, 98, 105sylc 65 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 2 ≤ 𝑁)
107 1le2 11241 . . . . . . . . 9 1 ≤ 2
108106, 107jctil 560 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
109108adantr 481 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
110 eluzelz 11697 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
111110adantr 481 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ)
112 2z 11409 . . . . . . . . 9 2 ∈ ℤ
113 1z 11407 . . . . . . . . 9 1 ∈ ℤ
114 elfz 12332 . . . . . . . . 9 ((2 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
115112, 113, 114mp3an12 1414 . . . . . . . 8 (𝑁 ∈ ℤ → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
116111, 115syl 17 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
117109, 116mpbird 247 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 ∈ (1...𝑁))
118 fzsplit 12367 . . . . . 6 (2 ∈ (1...𝑁) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁)))
119117, 118syl 17 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ ((2 + 1)...𝑁)))
12012oveq1i 6660 . . . . . 6 (3...𝑁) = ((2 + 1)...𝑁)
121120uneq2i 3764 . . . . 5 ((1...2) ∪ (3...𝑁)) = ((1...2) ∪ ((2 + 1)...𝑁))
122119, 121syl6eqr 2674 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) = ((1...2) ∪ (3...𝑁)))
123 fzfid 12772 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝑁) ∈ Fin)
12465ad2antrr 762 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
125124, 74sylancom 701 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
12648, 49axlowdimlem5 25826 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ({⟨1, 𝑋⟩, ⟨2, 𝑌⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
12745, 126syl5eqel 2705 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝐴 ∈ (𝔼‘𝑁))
1281, 127syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝐴 ∈ (𝔼‘𝑁))
129128ad2antrr 762 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
130 fveecn 25782 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
131129, 130sylancom 701 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
132125, 131subcld 10392 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃𝑖) − (𝐴𝑖)) ∈ ℂ)
133132sqcld 13006 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑃𝑖) − (𝐴𝑖))↑2) ∈ ℂ)
13496, 122, 123, 133fsumsplit 14471 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑃𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2)))
13587, 88sylan 488 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
136135, 131subcld 10392 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑄𝑖) − (𝐴𝑖)) ∈ ℂ)
137136sqcld 13006 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑄𝑖) − (𝐴𝑖))↑2) ∈ ℂ)
13896, 122, 123, 137fsumsplit 14471 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2) = (Σ𝑖 ∈ (1...2)(((𝑄𝑖) − (𝐴𝑖))↑2) + Σ𝑖 ∈ (3...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
13995, 134, 1383eqtr4d 2666 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2))
14065adantr 481 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑃 ∈ (𝔼‘𝑁))
141128adantr 481 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐴 ∈ (𝔼‘𝑁))
142 brcgr 25780 . . 3 (((𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
143140, 141, 87, 141, 142syl22anc 1327 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝑃𝑖) − (𝐴𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝑄𝑖) − (𝐴𝑖))↑2)))
144139, 143mpbird 247 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ⟨𝑃, 𝐴⟩Cgr⟨𝑄, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cmin 10266  -cneg 10267  cn 11020  2c2 11070  3c3 11071  cz 11377  cuz 11687  ...cfz 12326  cexp 12860  Σcsu 14416  𝔼cee 25768  Cgrccgr 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-cgr 25773
This theorem is referenced by:  axlowdim  25841
  Copyright terms: Public domain W3C validator