MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolioo Structured version   Visualization version   Unicode version

Theorem ovolioo 23336
Description: The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014.)
Assertion
Ref Expression
ovolioo  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol* `  ( A (,) B ) )  =  ( B  -  A ) )

Proof of Theorem ovolioo
StepHypRef Expression
1 ioombl 23333 . . 3  |-  ( A (,) B )  e. 
dom  vol
2 mblvol 23298 . . 3  |-  ( ( A (,) B )  e.  dom  vol  ->  ( vol `  ( A (,) B ) )  =  ( vol* `  ( A (,) B
) ) )
31, 2ax-mp 5 . 2  |-  ( vol `  ( A (,) B
) )  =  ( vol* `  ( A (,) B ) )
4 iccmbl 23334 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  e.  dom  vol )
5 mblvol 23298 . . . . 5  |-  ( ( A [,] B )  e.  dom  vol  ->  ( vol `  ( A [,] B ) )  =  ( vol* `  ( A [,] B
) ) )
64, 5syl 17 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( vol `  ( A [,] B ) )  =  ( vol* `  ( A [,] B
) ) )
763adant3 1081 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  ( A [,] B ) )  =  ( vol* `  ( A [,] B ) ) )
81a1i 11 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( A (,) B )  e. 
dom  vol )
9 prssi 4353 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  { A ,  B }  C_  RR )
1093adant3 1081 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  { A ,  B }  C_  RR )
11 prfi 8235 . . . . . . 7  |-  { A ,  B }  e.  Fin
12 ovolfi 23262 . . . . . . 7  |-  ( ( { A ,  B }  e.  Fin  /\  { A ,  B }  C_  RR )  ->  ( vol* `  { A ,  B } )  =  0 )
1311, 10, 12sylancr 695 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol* `  { A ,  B } )  =  0 )
14 nulmbl 23303 . . . . . 6  |-  ( ( { A ,  B }  C_  RR  /\  ( vol* `  { A ,  B } )  =  0 )  ->  { A ,  B }  e.  dom  vol )
1510, 13, 14syl2anc 693 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  { A ,  B }  e.  dom  vol )
16 df-pr 4180 . . . . . . . 8  |-  { A ,  B }  =  ( { A }  u.  { B } )
1716ineq2i 3811 . . . . . . 7  |-  ( ( A (,) B )  i^i  { A ,  B } )  =  ( ( A (,) B
)  i^i  ( { A }  u.  { B } ) )
18 indi 3873 . . . . . . 7  |-  ( ( A (,) B )  i^i  ( { A }  u.  { B } ) )  =  ( ( ( A (,) B )  i^i 
{ A } )  u.  ( ( A (,) B )  i^i 
{ B } ) )
1917, 18eqtri 2644 . . . . . 6  |-  ( ( A (,) B )  i^i  { A ,  B } )  =  ( ( ( A (,) B )  i^i  { A } )  u.  (
( A (,) B
)  i^i  { B } ) )
20 simp1 1061 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  A  e.  RR )
2120ltnrd 10171 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  -.  A  <  A )
22 eliooord 12233 . . . . . . . . . . 11  |-  ( A  e.  ( A (,) B )  ->  ( A  <  A  /\  A  <  B ) )
2322simpld 475 . . . . . . . . . 10  |-  ( A  e.  ( A (,) B )  ->  A  <  A )
2421, 23nsyl 135 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  -.  A  e.  ( A (,) B ) )
25 disjsn 4246 . . . . . . . . 9  |-  ( ( ( A (,) B
)  i^i  { A } )  =  (/)  <->  -.  A  e.  ( A (,) B ) )
2624, 25sylibr 224 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( A (,) B
)  i^i  { A } )  =  (/) )
27 simp2 1062 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR )
2827ltnrd 10171 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  -.  B  <  B )
29 eliooord 12233 . . . . . . . . . . 11  |-  ( B  e.  ( A (,) B )  ->  ( A  <  B  /\  B  <  B ) )
3029simprd 479 . . . . . . . . . 10  |-  ( B  e.  ( A (,) B )  ->  B  <  B )
3128, 30nsyl 135 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  -.  B  e.  ( A (,) B ) )
32 disjsn 4246 . . . . . . . . 9  |-  ( ( ( A (,) B
)  i^i  { B } )  =  (/)  <->  -.  B  e.  ( A (,) B ) )
3331, 32sylibr 224 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( A (,) B
)  i^i  { B } )  =  (/) )
3426, 33uneq12d 3768 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( ( A (,) B )  i^i  { A } )  u.  (
( A (,) B
)  i^i  { B } ) )  =  ( (/)  u.  (/) ) )
35 un0 3967 . . . . . . 7  |-  ( (/)  u.  (/) )  =  (/)
3634, 35syl6eq 2672 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( ( A (,) B )  i^i  { A } )  u.  (
( A (,) B
)  i^i  { B } ) )  =  (/) )
3719, 36syl5eq 2668 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( A (,) B
)  i^i  { A ,  B } )  =  (/) )
38 ioossicc 12259 . . . . . . . 8  |-  ( A (,) B )  C_  ( A [,] B )
3938a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( A (,) B )  C_  ( A [,] B ) )
40 iccssre 12255 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41403adant3 1081 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( A [,] B )  C_  RR )
42 ovolicc 23291 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol* `  ( A [,] B ) )  =  ( B  -  A ) )
4327, 20resubcld 10458 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( B  -  A )  e.  RR )
4442, 43eqeltrd 2701 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol* `  ( A [,] B ) )  e.  RR )
45 ovolsscl 23254 . . . . . . 7  |-  ( ( ( A (,) B
)  C_  ( A [,] B )  /\  ( A [,] B )  C_  RR  /\  ( vol* `  ( A [,] B
) )  e.  RR )  ->  ( vol* `  ( A (,) B
) )  e.  RR )
4639, 41, 44, 45syl3anc 1326 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol* `  ( A (,) B ) )  e.  RR )
473, 46syl5eqel 2705 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  ( A (,) B ) )  e.  RR )
48 mblvol 23298 . . . . . . . 8  |-  ( { A ,  B }  e.  dom  vol  ->  ( vol `  { A ,  B } )  =  ( vol* `  { A ,  B }
) )
4915, 48syl 17 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  { A ,  B } )  =  ( vol* `  { A ,  B }
) )
5049, 13eqtrd 2656 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  { A ,  B } )  =  0 )
51 0re 10040 . . . . . 6  |-  0  e.  RR
5250, 51syl6eqel 2709 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  { A ,  B } )  e.  RR )
53 volun 23313 . . . . 5  |-  ( ( ( ( A (,) B )  e.  dom  vol 
/\  { A ,  B }  e.  dom  vol 
/\  ( ( A (,) B )  i^i 
{ A ,  B } )  =  (/) )  /\  ( ( vol `  ( A (,) B
) )  e.  RR  /\  ( vol `  { A ,  B }
)  e.  RR ) )  ->  ( vol `  ( ( A (,) B )  u.  { A ,  B }
) )  =  ( ( vol `  ( A (,) B ) )  +  ( vol `  { A ,  B }
) ) )
548, 15, 37, 47, 52, 53syl32anc 1334 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  ( ( A (,) B )  u. 
{ A ,  B } ) )  =  ( ( vol `  ( A (,) B ) )  +  ( vol `  { A ,  B }
) ) )
55 rexr 10085 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  RR* )
56 rexr 10085 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
57 id 22 . . . . . 6  |-  ( A  <_  B  ->  A  <_  B )
58 prunioo 12301 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
5955, 56, 57, 58syl3an 1368 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
6059fveq2d 6195 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  ( ( A (,) B )  u. 
{ A ,  B } ) )  =  ( vol `  ( A [,] B ) ) )
6150oveq2d 6666 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( vol `  ( A (,) B ) )  +  ( vol `  { A ,  B }
) )  =  ( ( vol `  ( A (,) B ) )  +  0 ) )
6247recnd 10068 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  ( A (,) B ) )  e.  CC )
6362addid1d 10236 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( vol `  ( A (,) B ) )  +  0 )  =  ( vol `  ( A (,) B ) ) )
6461, 63eqtrd 2656 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (
( vol `  ( A (,) B ) )  +  ( vol `  { A ,  B }
) )  =  ( vol `  ( A (,) B ) ) )
6554, 60, 643eqtr3d 2664 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  ( A [,] B ) )  =  ( vol `  ( A (,) B ) ) )
667, 65, 423eqtr3d 2664 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  ( A (,) B ) )  =  ( B  -  A
) )
673, 66syl5eqr 2670 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol* `  ( A (,) B ) )  =  ( B  -  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   (,)cioo 12175   [,]cicc 12178   vol*covol 23231   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  volioo  23337  ioovolcl  23338  ovolfs2  23339  ioorcl2  23340  uniioovol  23347  uniioombllem2  23351  uniioombllem3a  23352  uniioombllem4  23354  uniioombllem6  23356  ftc1lem4  23802  itg2gt0cn  33465  ftc1cnnclem  33483  ftc1anclem7  33491
  Copyright terms: Public domain W3C validator