![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reelprrecn | Structured version Visualization version GIF version |
Description: Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
reelprrecn | ⊢ ℝ ∈ {ℝ, ℂ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 10027 | . 2 ⊢ ℝ ∈ V | |
2 | 1 | prid1 4297 | 1 ⊢ ℝ ∈ {ℝ, ℂ} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1990 {cpr 4179 ℂcc 9934 ℝcr 9935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-cnex 9992 ax-resscn 9993 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-pr 4180 |
This theorem is referenced by: dvf 23671 dvmptcj 23731 dvmptre 23732 dvmptim 23733 rolle 23753 cmvth 23754 mvth 23755 dvlip 23756 dvlipcn 23757 dvle 23770 dvivthlem1 23771 dvivth 23773 lhop2 23778 dvcnvre 23782 dvfsumle 23784 dvfsumge 23785 dvfsumabs 23786 dvfsumlem2 23790 dvfsum2 23797 ftc2 23807 itgparts 23810 itgsubstlem 23811 aalioulem3 24089 taylthlem2 24128 taylth 24129 efcvx 24203 pige3 24269 dvrelog 24383 advlog 24400 advlogexp 24401 logccv 24409 dvcxp1 24481 loglesqrt 24499 divsqrtsumlem 24706 lgamgulmlem2 24756 logexprlim 24950 logdivsum 25222 log2sumbnd 25233 fdvneggt 30678 fdvnegge 30680 itgexpif 30684 logdivsqrle 30728 ftc2nc 33494 dvreasin 33498 dvreacos 33499 areacirclem1 33500 itgpowd 37800 lhe4.4ex1a 38528 dvcosre 40126 dvcnre 40130 dvmptresicc 40134 itgsin0pilem1 40165 itgsinexplem1 40169 itgcoscmulx 40185 itgiccshift 40196 itgperiod 40197 itgsbtaddcnst 40198 dirkeritg 40319 dirkercncflem2 40321 fourierdlem28 40352 fourierdlem39 40363 fourierdlem56 40379 fourierdlem57 40380 fourierdlem58 40381 fourierdlem59 40382 fourierdlem60 40383 fourierdlem61 40384 fourierdlem62 40385 fourierdlem68 40391 fourierdlem72 40395 fouriersw 40448 etransclem2 40453 etransclem23 40474 etransclem35 40486 etransclem38 40489 etransclem39 40490 etransclem44 40495 etransclem45 40496 etransclem46 40497 etransclem47 40498 |
Copyright terms: Public domain | W3C validator |