| Step | Hyp | Ref
| Expression |
| 1 | | reelprrecn 10028 |
. . . 4
⊢ ℝ
∈ {ℝ, ℂ} |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 3 | | fourierdlem28.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 4 | | fourierdlem28.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 5 | 3, 4 | readdcld 10069 |
. . . . . 6
⊢ (𝜑 → (𝑋 + 𝐴) ∈ ℝ) |
| 6 | 5 | rexrd 10089 |
. . . . 5
⊢ (𝜑 → (𝑋 + 𝐴) ∈
ℝ*) |
| 7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈
ℝ*) |
| 8 | | fourierdlem28.3b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 9 | 3, 8 | readdcld 10069 |
. . . . . 6
⊢ (𝜑 → (𝑋 + 𝐵) ∈ ℝ) |
| 10 | 9 | rexrd 10089 |
. . . . 5
⊢ (𝜑 → (𝑋 + 𝐵) ∈
ℝ*) |
| 11 | 10 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈
ℝ*) |
| 12 | 3 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ) |
| 13 | | elioore 12205 |
. . . . . 6
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ) |
| 14 | 13 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
| 15 | 12, 14 | readdcld 10069 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
| 16 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
| 17 | 16 | rexrd 10089 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈
ℝ*) |
| 18 | 8 | rexrd 10089 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 19 | 18 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈
ℝ*) |
| 20 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵)) |
| 21 | | ioogtlb 39717 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑠
∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) |
| 22 | 17, 19, 20, 21 | syl3anc 1326 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) |
| 23 | 16, 14, 12, 22 | ltadd2dd 10196 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠)) |
| 24 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
| 25 | | iooltub 39735 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑠
∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) |
| 26 | 17, 19, 20, 25 | syl3anc 1326 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) |
| 27 | 14, 24, 12, 26 | ltadd2dd 10196 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵)) |
| 28 | 7, 11, 15, 23, 27 | eliood 39720 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) |
| 29 | | 1red 10055 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ) |
| 30 | | fourierdlem28.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 31 | 30 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝐹:ℝ⟶ℝ) |
| 32 | | elioore 12205 |
. . . . . 6
⊢ (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → 𝑦 ∈ ℝ) |
| 33 | 32 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝑦 ∈ ℝ) |
| 34 | 31, 33 | ffvelrnd 6360 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹‘𝑦) ∈ ℝ) |
| 35 | 34 | recnd 10068 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹‘𝑦) ∈ ℂ) |
| 36 | | fourierdlem28.df |
. . . 4
⊢ (𝜑 → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) |
| 37 | 36 | ffvelrnda 6359 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐷‘𝑦) ∈ ℝ) |
| 38 | 12 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ) |
| 39 | | 0red 10041 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ) |
| 40 | | iooretop 22569 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
| 41 | | eqid 2622 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 42 | 41 | tgioo2 22606 |
. . . . . . . 8
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 43 | 40, 42 | eleqtri 2699 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈
((TopOpen‘ℂfld) ↾t
ℝ) |
| 44 | 43 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
| 45 | 3 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 46 | 2, 44, 45 | dvmptconst 40129 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0)) |
| 47 | 14 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ) |
| 48 | 2, 44 | dvmptidg 40131 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 49 | 2, 38, 39, 46, 47, 29, 48 | dvmptadd 23723 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1))) |
| 50 | | 0p1e1 11132 |
. . . . . 6
⊢ (0 + 1) =
1 |
| 51 | 50 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (0 + 1) = 1) |
| 52 | 51 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 53 | 49, 52 | eqtrd 2656 |
. . 3
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 54 | 30 | feqmptd 6249 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
| 55 | 54 | reseq1d 5395 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
| 56 | | ioossre 12235 |
. . . . . . . 8
⊢ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ |
| 57 | 56 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ) |
| 58 | 57 | resmptd 5452 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦))) |
| 59 | 55, 58 | eqtr2d 2657 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦)) = (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
| 60 | 59 | oveq2d 6666 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))) |
| 61 | | fourierdlem28.d |
. . . . . 6
⊢ 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
| 62 | 61 | eqcomi 2631 |
. . . . 5
⊢ (ℝ
D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷 |
| 63 | 62 | a1i 11 |
. . . 4
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷) |
| 64 | 36 | feqmptd 6249 |
. . . 4
⊢ (𝜑 → 𝐷 = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷‘𝑦))) |
| 65 | 60, 63, 64 | 3eqtrd 2660 |
. . 3
⊢ (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷‘𝑦))) |
| 66 | | fveq2 6191 |
. . 3
⊢ (𝑦 = (𝑋 + 𝑠) → (𝐹‘𝑦) = (𝐹‘(𝑋 + 𝑠))) |
| 67 | | fveq2 6191 |
. . 3
⊢ (𝑦 = (𝑋 + 𝑠) → (𝐷‘𝑦) = (𝐷‘(𝑋 + 𝑠))) |
| 68 | 2, 2, 28, 29, 35, 37, 53, 65, 66, 67 | dvmptco 23735 |
. 2
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1))) |
| 69 | 36 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) |
| 70 | 69, 28 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℝ) |
| 71 | 70 | recnd 10068 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℂ) |
| 72 | 71 | mulid1d 10057 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐷‘(𝑋 + 𝑠)) · 1) = (𝐷‘(𝑋 + 𝑠))) |
| 73 | 72 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠)))) |
| 74 | 68, 73 | eqtrd 2656 |
1
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠)))) |