Step | Hyp | Ref
| Expression |
1 | | rolle.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | rolle.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | rolle.lt |
. . . . 5
⊢ (𝜑 → 𝐴 < 𝐵) |
4 | 1, 2, 3 | ltled 10185 |
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
5 | | rolle.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
6 | 1, 2, 4, 5 | evthicc 23228 |
. . 3
⊢ (𝜑 → (∃𝑢 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ ∃𝑣 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑣) ≤ (𝐹‘𝑦))) |
7 | | reeanv 3107 |
. . 3
⊢
(∃𝑢 ∈
(𝐴[,]𝐵)∃𝑣 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑣) ≤ (𝐹‘𝑦)) ↔ (∃𝑢 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ ∃𝑣 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑣) ≤ (𝐹‘𝑦))) |
8 | 6, 7 | sylibr 224 |
. 2
⊢ (𝜑 → ∃𝑢 ∈ (𝐴[,]𝐵)∃𝑣 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑣) ≤ (𝐹‘𝑦))) |
9 | | r19.26 3064 |
. . . 4
⊢
(∀𝑦 ∈
(𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ↔ (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑣) ≤ (𝐹‘𝑦))) |
10 | 1 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐴 ∈ ℝ) |
11 | 2 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐵 ∈ ℝ) |
12 | 3 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐴 < 𝐵) |
13 | 5 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
14 | | rolle.d |
. . . . . . . . 9
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
15 | 14 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
16 | | simpl 473 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) → (𝐹‘𝑦) ≤ (𝐹‘𝑢)) |
17 | 16 | ralimi 2952 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
(𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑢)) |
18 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → (𝐹‘𝑦) = (𝐹‘𝑡)) |
19 | 18 | breq1d 4663 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑡 → ((𝐹‘𝑦) ≤ (𝐹‘𝑢) ↔ (𝐹‘𝑡) ≤ (𝐹‘𝑢))) |
20 | 19 | cbvralv 3171 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
(𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑢) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)(𝐹‘𝑡) ≤ (𝐹‘𝑢)) |
21 | 17, 20 | sylib 208 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) → ∀𝑡 ∈ (𝐴[,]𝐵)(𝐹‘𝑡) ≤ (𝐹‘𝑢)) |
22 | 21 | ad2antrl 764 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → ∀𝑡 ∈ (𝐴[,]𝐵)(𝐹‘𝑡) ≤ (𝐹‘𝑢)) |
23 | | simplrl 800 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝑢 ∈ (𝐴[,]𝐵)) |
24 | | simprr 796 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → ¬ 𝑢 ∈ {𝐴, 𝐵}) |
25 | 10, 11, 12, 13, 15, 22, 23, 24 | rollelem 23752 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |
26 | 25 | expr 643 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))) → (¬ 𝑢 ∈ {𝐴, 𝐵} → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
27 | 1 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝐴 ∈ ℝ) |
28 | 2 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝐵 ∈ ℝ) |
29 | 3 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝐴 < 𝐵) |
30 | | cncff 22696 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
31 | 5, 30 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
32 | 31 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑢) ∈ ℝ) |
33 | 32 | renegcld 10457 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴[,]𝐵)) → -(𝐹‘𝑢) ∈ ℝ) |
34 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)) = (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)) |
35 | 33, 34 | fmptd 6385 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)):(𝐴[,]𝐵)⟶ℝ) |
36 | | ax-resscn 9993 |
. . . . . . . . . . . 12
⊢ ℝ
⊆ ℂ |
37 | | ssid 3624 |
. . . . . . . . . . . . . . 15
⊢ ℂ
⊆ ℂ |
38 | | cncfss 22702 |
. . . . . . . . . . . . . . 15
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) |
39 | 36, 37, 38 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢ ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ) |
40 | 39, 5 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
41 | 34 | negfcncf 22722 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
43 | | cncffvrn 22701 |
. . . . . . . . . . . 12
⊢ ((ℝ
⊆ ℂ ∧ (𝑢
∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)):(𝐴[,]𝐵)⟶ℝ)) |
44 | 36, 42, 43 | sylancr 695 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)):(𝐴[,]𝐵)⟶ℝ)) |
45 | 35, 44 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
46 | 45 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
47 | 36 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ℝ ⊆
ℂ) |
48 | | iccssre 12255 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
49 | 1, 2, 48 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
50 | | fss 6056 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
51 | 31, 36, 50 | sylancl 694 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
52 | 51 | ffvelrnda 6359 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑢) ∈ ℂ) |
53 | 52 | negcld 10379 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴[,]𝐵)) → -(𝐹‘𝑢) ∈ ℂ) |
54 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
55 | 54 | tgioo2 22606 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
56 | | iccntr 22624 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
57 | 1, 2, 56 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
58 | 47, 49, 53, 55, 54, 57 | dvmptntr 23734 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))) = (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ -(𝐹‘𝑢)))) |
59 | | reelprrecn 10028 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ {ℝ, ℂ} |
60 | 59 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
61 | | ioossicc 12259 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
62 | 61 | sseli 3599 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ (𝐴[,]𝐵)) |
63 | 62, 52 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑢) ∈ ℂ) |
64 | | fvexd 6203 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑢) ∈ V) |
65 | 31 | feqmptd 6249 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑢))) |
66 | 65 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑢)))) |
67 | | dvf 23671 |
. . . . . . . . . . . . . . . . 17
⊢ (ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ |
68 | 14 | feq2d 6031 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℂ)) |
69 | 67, 68 | mpbii 223 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
70 | 69 | feqmptd 6249 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℝ D 𝐹) = (𝑢 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑢))) |
71 | 47, 49, 52, 55, 54, 57 | dvmptntr 23734 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝑢))) = (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑢)))) |
72 | 66, 70, 71 | 3eqtr3rd 2665 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑢))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑢))) |
73 | 60, 63, 64, 72 | dvmptneg 23729 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ -(𝐹‘𝑢))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))) |
74 | 58, 73 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))) |
75 | 74 | dmeqd 5326 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))) = dom (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))) |
76 | | dmmptg 5632 |
. . . . . . . . . . . 12
⊢
(∀𝑢 ∈
(𝐴(,)𝐵)-((ℝ D 𝐹)‘𝑢) ∈ V → dom (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)) = (𝐴(,)𝐵)) |
77 | | negex 10279 |
. . . . . . . . . . . . 13
⊢
-((ℝ D 𝐹)‘𝑢) ∈ V |
78 | 77 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (𝐴(,)𝐵) → -((ℝ D 𝐹)‘𝑢) ∈ V) |
79 | 76, 78 | mprg 2926 |
. . . . . . . . . . 11
⊢ dom
(𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)) = (𝐴(,)𝐵) |
80 | 75, 79 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝜑 → dom (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))) = (𝐴(,)𝐵)) |
81 | 80 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → dom (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))) = (𝐴(,)𝐵)) |
82 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) → (𝐹‘𝑣) ≤ (𝐹‘𝑦)) |
83 | 31 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
84 | | simplrr 801 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑣 ∈ (𝐴[,]𝐵)) |
85 | 83, 84 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑣) ∈ ℝ) |
86 | 31 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
87 | 86 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑦) ∈ ℝ) |
88 | 85, 87 | lenegd 10606 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝑣) ≤ (𝐹‘𝑦) ↔ -(𝐹‘𝑦) ≤ -(𝐹‘𝑣))) |
89 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 = 𝑦 → (𝐹‘𝑢) = (𝐹‘𝑦)) |
90 | 89 | negeqd 10275 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = 𝑦 → -(𝐹‘𝑢) = -(𝐹‘𝑦)) |
91 | | negex 10279 |
. . . . . . . . . . . . . . . . . 18
⊢ -(𝐹‘𝑦) ∈ V |
92 | 90, 34, 91 | fvmpt 6282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (𝐴[,]𝐵) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑦) = -(𝐹‘𝑦)) |
93 | 92 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑦) = -(𝐹‘𝑦)) |
94 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 = 𝑣 → (𝐹‘𝑢) = (𝐹‘𝑣)) |
95 | 94 | negeqd 10275 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = 𝑣 → -(𝐹‘𝑢) = -(𝐹‘𝑣)) |
96 | | negex 10279 |
. . . . . . . . . . . . . . . . . 18
⊢ -(𝐹‘𝑣) ∈ V |
97 | 95, 34, 96 | fvmpt 6282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ (𝐴[,]𝐵) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣) = -(𝐹‘𝑣)) |
98 | 84, 97 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣) = -(𝐹‘𝑣)) |
99 | 93, 98 | breq12d 4666 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣) ↔ -(𝐹‘𝑦) ≤ -(𝐹‘𝑣))) |
100 | 88, 99 | bitr4d 271 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝑣) ≤ (𝐹‘𝑦) ↔ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣))) |
101 | 82, 100 | syl5ib 234 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣))) |
102 | 101 | ralimdva 2962 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) → ∀𝑦 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣))) |
103 | 102 | imp 445 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))) → ∀𝑦 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣)) |
104 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑦) = ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑡)) |
105 | 104 | breq1d 4663 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → (((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣) ↔ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣))) |
106 | 105 | cbvralv 3171 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
(𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣)) |
107 | 103, 106 | sylib 208 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))) → ∀𝑡 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣)) |
108 | 107 | adantrr 753 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ∀𝑡 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢))‘𝑣)) |
109 | | simplrr 801 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝑣 ∈ (𝐴[,]𝐵)) |
110 | | simprr 796 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ¬ 𝑣 ∈ {𝐴, 𝐵}) |
111 | 27, 28, 29, 46, 81, 108, 109, 110 | rollelem 23752 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)))‘𝑥) = 0) |
112 | 74 | fveq1d 6193 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)))‘𝑥) = ((𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))‘𝑥)) |
113 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑥 → ((ℝ D 𝐹)‘𝑢) = ((ℝ D 𝐹)‘𝑥)) |
114 | 113 | negeqd 10275 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑥 → -((ℝ D 𝐹)‘𝑢) = -((ℝ D 𝐹)‘𝑥)) |
115 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)) = (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)) |
116 | | negex 10279 |
. . . . . . . . . . . . . 14
⊢
-((ℝ D 𝐹)‘𝑥) ∈ V |
117 | 114, 115,
116 | fvmpt 6282 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐴(,)𝐵) → ((𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))‘𝑥) = -((ℝ D 𝐹)‘𝑥)) |
118 | 112, 117 | sylan9eq 2676 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)))‘𝑥) = -((ℝ D 𝐹)‘𝑥)) |
119 | 118 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)))‘𝑥) = 0 ↔ -((ℝ D 𝐹)‘𝑥) = 0)) |
120 | 14 | eleq2d 2687 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ dom (ℝ D 𝐹) ↔ 𝑥 ∈ (𝐴(,)𝐵))) |
121 | 120 | biimpar 502 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ dom (ℝ D 𝐹)) |
122 | 67 | ffvelrni 6358 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
123 | 121, 122 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
124 | 123 | negeq0d 10384 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) = 0 ↔ -((ℝ D 𝐹)‘𝑥) = 0)) |
125 | 119, 124 | bitr4d 271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)))‘𝑥) = 0 ↔ ((ℝ D 𝐹)‘𝑥) = 0)) |
126 | 125 | rexbidva 3049 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)))‘𝑥) = 0 ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
127 | 126 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → (∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹‘𝑢)))‘𝑥) = 0 ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
128 | 111, 127 | mpbid 222 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |
129 | 128 | expr 643 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))) → (¬ 𝑣 ∈ {𝐴, 𝐵} → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
130 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
131 | 130 | elpr 4198 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝐴, 𝐵} ↔ (𝑢 = 𝐴 ∨ 𝑢 = 𝐵)) |
132 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝐴 → (𝐹‘𝑢) = (𝐹‘𝐴)) |
133 | 132 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 = 𝐴 → (𝐹‘𝑢) = (𝐹‘𝐴))) |
134 | | rolle.e |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
135 | 134 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹‘𝐵) = (𝐹‘𝐴)) |
136 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝐵 → (𝐹‘𝑢) = (𝐹‘𝐵)) |
137 | 136 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝐵 → ((𝐹‘𝑢) = (𝐹‘𝐴) ↔ (𝐹‘𝐵) = (𝐹‘𝐴))) |
138 | 135, 137 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑢 = 𝐵 → (𝐹‘𝑢) = (𝐹‘𝐴))) |
139 | 133, 138 | jaod 395 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑢 = 𝐴 ∨ 𝑢 = 𝐵) → (𝐹‘𝑢) = (𝐹‘𝐴))) |
140 | 131, 139 | syl5bi 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝑢 ∈ {𝐴, 𝐵} → (𝐹‘𝑢) = (𝐹‘𝐴))) |
141 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (𝑢 ∈ {𝐴, 𝐵} ↔ 𝑣 ∈ {𝐴, 𝐵})) |
142 | 94 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → ((𝐹‘𝑢) = (𝐹‘𝐴) ↔ (𝐹‘𝑣) = (𝐹‘𝐴))) |
143 | 141, 142 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑣 → ((𝑢 ∈ {𝐴, 𝐵} → (𝐹‘𝑢) = (𝐹‘𝐴)) ↔ (𝑣 ∈ {𝐴, 𝐵} → (𝐹‘𝑣) = (𝐹‘𝐴)))) |
144 | 143 | imbi2d 330 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑣 → ((𝜑 → (𝑢 ∈ {𝐴, 𝐵} → (𝐹‘𝑢) = (𝐹‘𝐴))) ↔ (𝜑 → (𝑣 ∈ {𝐴, 𝐵} → (𝐹‘𝑣) = (𝐹‘𝐴))))) |
145 | 144, 140 | chvarv 2263 |
. . . . . . . . 9
⊢ (𝜑 → (𝑣 ∈ {𝐴, 𝐵} → (𝐹‘𝑣) = (𝐹‘𝐴))) |
146 | 140, 145 | anim12d 586 |
. . . . . . . 8
⊢ (𝜑 → ((𝑢 ∈ {𝐴, 𝐵} ∧ 𝑣 ∈ {𝐴, 𝐵}) → ((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴)))) |
147 | 146 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))) → ((𝑢 ∈ {𝐴, 𝐵} ∧ 𝑣 ∈ {𝐴, 𝐵}) → ((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴)))) |
148 | 1 | rexrd 10089 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
149 | 2 | rexrd 10089 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
150 | | lbicc2 12288 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
151 | 148, 149,
4, 150 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
152 | 31, 151 | ffvelrnd 6360 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
153 | 152 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) ∈ ℝ) |
154 | 87, 153 | letri3d 10179 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝑦) = (𝐹‘𝐴) ↔ ((𝐹‘𝑦) ≤ (𝐹‘𝐴) ∧ (𝐹‘𝐴) ≤ (𝐹‘𝑦)))) |
155 | | breq2 4657 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑢) = (𝐹‘𝐴) → ((𝐹‘𝑦) ≤ (𝐹‘𝑢) ↔ (𝐹‘𝑦) ≤ (𝐹‘𝐴))) |
156 | | breq1 4656 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑣) = (𝐹‘𝐴) → ((𝐹‘𝑣) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝐴) ≤ (𝐹‘𝑦))) |
157 | 155, 156 | bi2anan9 917 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴)) → (((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) ↔ ((𝐹‘𝑦) ≤ (𝐹‘𝐴) ∧ (𝐹‘𝐴) ≤ (𝐹‘𝑦)))) |
158 | 157 | bibi2d 332 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴)) → (((𝐹‘𝑦) = (𝐹‘𝐴) ↔ ((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))) ↔ ((𝐹‘𝑦) = (𝐹‘𝐴) ↔ ((𝐹‘𝑦) ≤ (𝐹‘𝐴) ∧ (𝐹‘𝐴) ≤ (𝐹‘𝑦))))) |
159 | 154, 158 | syl5ibrcom 237 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴)) → ((𝐹‘𝑦) = (𝐹‘𝐴) ↔ ((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))))) |
160 | 159 | impancom 456 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴))) → (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹‘𝑦) = (𝐹‘𝐴) ↔ ((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))))) |
161 | 160 | imp 445 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝑦) = (𝐹‘𝐴) ↔ ((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)))) |
162 | 161 | ralbidva 2985 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴))) → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) = (𝐹‘𝐴) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)))) |
163 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢ (𝐹:(𝐴[,]𝐵)⟶ℝ → 𝐹 Fn (𝐴[,]𝐵)) |
164 | 31, 163 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn (𝐴[,]𝐵)) |
165 | | fnconstg 6093 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝐴) ∈ ℝ → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) |
166 | 152, 165 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) |
167 | | eqfnfv 6311 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn (𝐴[,]𝐵) ∧ ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) → (𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) = (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑦))) |
168 | 164, 166,
167 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) = (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑦))) |
169 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘𝐴) ∈ V |
170 | 169 | fvconst2 6469 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑦) = (𝐹‘𝐴)) |
171 | 170 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹‘𝑦) = (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑦) ↔ (𝐹‘𝑦) = (𝐹‘𝐴))) |
172 | 171 | ralbiia 2979 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
(𝐴[,]𝐵)(𝐹‘𝑦) = (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑦) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) = (𝐹‘𝐴)) |
173 | 168, 172 | syl6bb 276 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) = (𝐹‘𝐴))) |
174 | | fconstmpt 5163 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝐴)) |
175 | 174 | eqeq2i 2634 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) ↔ 𝐹 = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝐴))) |
176 | 175 | biimpi 206 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) → 𝐹 = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝐴))) |
177 | 176 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) → (ℝ D 𝐹) = (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝐴)))) |
178 | 152 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℂ) |
179 | 178 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ ℝ) → (𝐹‘𝐴) ∈ ℂ) |
180 | | 0cnd 10033 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ ℝ) → 0 ∈
ℂ) |
181 | 60, 178 | dvmptc 23721 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℝ D (𝑢 ∈ ℝ ↦ (𝐹‘𝐴))) = (𝑢 ∈ ℝ ↦ 0)) |
182 | 60, 179, 180, 181, 49, 55, 54, 57 | dvmptres2 23725 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹‘𝐴))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ 0)) |
183 | 177, 182 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) → (ℝ D 𝐹) = (𝑢 ∈ (𝐴(,)𝐵) ↦ 0)) |
184 | 183 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) → ((ℝ D 𝐹)‘𝑥) = ((𝑢 ∈ (𝐴(,)𝐵) ↦ 0)‘𝑥)) |
185 | | eqidd 2623 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑥 → 0 = 0) |
186 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ (𝐴(,)𝐵) ↦ 0) = (𝑢 ∈ (𝐴(,)𝐵) ↦ 0) |
187 | | c0ex 10034 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
V |
188 | 185, 186,
187 | fvmpt 6282 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝐴(,)𝐵) → ((𝑢 ∈ (𝐴(,)𝐵) ↦ 0)‘𝑥) = 0) |
189 | 184, 188 | sylan9eq 2676 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) = 0) |
190 | 189 | ralrimiva 2966 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) → ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |
191 | | ioon0 12201 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵)) |
192 | 148, 149,
191 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵)) |
193 | 3, 192 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴(,)𝐵) ≠ ∅) |
194 | | r19.2z 4060 |
. . . . . . . . . . . . . 14
⊢ (((𝐴(,)𝐵) ≠ ∅ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |
195 | 193, 194 | sylan 488 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |
196 | 190, 195 | syldan 487 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |
197 | 196 | ex 450 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
198 | 173, 197 | sylbird 250 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) = (𝐹‘𝐴) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
199 | 198 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴))) → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) = (𝐹‘𝐴) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
200 | 162, 199 | sylbird 250 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴))) → (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
201 | 200 | impancom 456 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))) → (((𝐹‘𝑢) = (𝐹‘𝐴) ∧ (𝐹‘𝑣) = (𝐹‘𝐴)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
202 | 147, 201 | syld 47 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))) → ((𝑢 ∈ {𝐴, 𝐵} ∧ 𝑣 ∈ {𝐴, 𝐵}) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
203 | 26, 129, 202 | ecased 985 |
. . . . 5
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦))) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |
204 | 203 | ex 450 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ (𝐹‘𝑣) ≤ (𝐹‘𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
205 | 9, 204 | syl5bir 233 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → ((∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑣) ≤ (𝐹‘𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
206 | 205 | rexlimdvva 3038 |
. 2
⊢ (𝜑 → (∃𝑢 ∈ (𝐴[,]𝐵)∃𝑣 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑣) ≤ (𝐹‘𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)) |
207 | 8, 206 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) |