MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  advlog Structured version   Visualization version   GIF version

Theorem advlog 24400
Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
advlog (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))

Proof of Theorem advlog
StepHypRef Expression
1 reelprrecn 10028 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 rpre 11839 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
43adantl 482 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
54recnd 10068 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
6 1cnd 10056 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 recn 10026 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
87adantl 482 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
9 1red 10055 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
102dvmptid 23720 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
11 rpssre 11843 . . . . . 6 + ⊆ ℝ
1211a1i 11 . . . . 5 (⊤ → ℝ+ ⊆ ℝ)
13 eqid 2622 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1413tgioo2 22606 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
15 ioorp 12251 . . . . . . 7 (0(,)+∞) = ℝ+
16 iooretop 22569 . . . . . . 7 (0(,)+∞) ∈ (topGen‘ran (,))
1715, 16eqeltrri 2698 . . . . . 6 + ∈ (topGen‘ran (,))
1817a1i 11 . . . . 5 (⊤ → ℝ+ ∈ (topGen‘ran (,)))
192, 8, 9, 10, 12, 14, 13, 18dvmptres 23726 . . . 4 (⊤ → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
20 relogcl 24322 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2120adantl 482 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
22 peano2rem 10348 . . . . . 6 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ)
2321, 22syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ)
2423recnd 10068 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℂ)
25 rpreccl 11857 . . . . . 6 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
2625adantl 482 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
2726rpcnd 11874 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
2821recnd 10068 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
29 dvrelog 24383 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
30 relogf1o 24313 . . . . . . . . . . 11 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
31 f1of 6137 . . . . . . . . . . 11 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3230, 31mp1i 13 . . . . . . . . . 10 (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ)
3332feqmptd 6249 . . . . . . . . 9 (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
34 fvres 6207 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
3534mpteq2ia 4740 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
3633, 35syl6eq 2672 . . . . . . . 8 (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
3736oveq2d 6666 . . . . . . 7 (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
3829, 37syl5reqr 2671 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
39 0cnd 10033 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ)
40 1cnd 10056 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
41 0cnd 10033 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
42 1cnd 10056 . . . . . . . 8 (⊤ → 1 ∈ ℂ)
432, 42dvmptc 23721 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
442, 40, 41, 43, 12, 14, 13, 18dvmptres 23726 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 1)) = (𝑥 ∈ ℝ+ ↦ 0))
452, 28, 27, 38, 6, 39, 44dvmptsub 23730 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)))
4627subid1d 10381 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) − 0) = (1 / 𝑥))
4746mpteq2dva 4744 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
4845, 47eqtrd 2656 . . . 4 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
492, 5, 6, 19, 24, 27, 48dvmptmul 23724 . . 3 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))))
5024mulid2d 10058 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 · ((log‘𝑥) − 1)) = ((log‘𝑥) − 1))
51 rpne0 11848 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ≠ 0)
5251adantl 482 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
535, 52recid2d 10797 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) · 𝑥) = 1)
5450, 53oveq12d 6668 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (((log‘𝑥) − 1) + 1))
55 ax-1cn 9994 . . . . . 6 1 ∈ ℂ
56 npcan 10290 . . . . . 6 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘𝑥) − 1) + 1) = (log‘𝑥))
5728, 55, 56sylancl 694 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) − 1) + 1) = (log‘𝑥))
5854, 57eqtrd 2656 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (log‘𝑥))
5958mpteq2dva 4744 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
6049, 59eqtrd 2656 . 2 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
6160trud 1493 1 (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wtru 1484  wcel 1990  wne 2794  wss 3574  {cpr 4179  cmpt 4729  ran crn 5115  cres 5116  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  cmin 10266   / cdiv 10684  +crp 11832  (,)cioo 12175  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746   D cdv 23627  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  logfacbnd3  24948
  Copyright terms: Public domain W3C validator