![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > taylth | Structured version Visualization version GIF version |
Description: Taylor's theorem. The Taylor polynomial of a 𝑁-times differentiable function is such that the error term goes to zero faster than (𝑥 − 𝐵)↑𝑁. This is Metamath 100 proof #35. (Contributed by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
taylth.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
taylth.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
taylth.d | ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) |
taylth.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
taylth.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
taylth.t | ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) |
taylth.r | ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) |
Ref | Expression |
---|---|
taylth | ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reelprrecn 10028 | . . 3 ⊢ ℝ ∈ {ℝ, ℂ} | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
3 | taylth.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
4 | ax-resscn 9993 | . . 3 ⊢ ℝ ⊆ ℂ | |
5 | fss 6056 | . . 3 ⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ) | |
6 | 3, 4, 5 | sylancl 694 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
7 | taylth.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
8 | taylth.d | . 2 ⊢ (𝜑 → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) | |
9 | taylth.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
10 | taylth.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
11 | taylth.t | . 2 ⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) | |
12 | taylth.r | . 2 ⊢ 𝑅 = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝐹‘𝑥) − (𝑇‘𝑥)) / ((𝑥 − 𝐵)↑𝑁))) | |
13 | 3 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐹:𝐴⟶ℝ) |
14 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐴 ⊆ ℝ) |
15 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → dom ((ℝ D𝑛 𝐹)‘𝑁) = 𝐴) |
16 | 9 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝑁 ∈ ℕ) |
17 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝐵 ∈ 𝐴) |
18 | simprl 794 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 𝑚 ∈ (1..^𝑁)) | |
19 | simprr 796 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵)) | |
20 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥)) | |
21 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) | |
22 | 20, 21 | oveq12d 6668 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥))) |
23 | oveq1 6657 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝑦 − 𝐵) = (𝑥 − 𝐵)) | |
24 | 23 | oveq1d 6665 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑𝑚) = ((𝑥 − 𝐵)↑𝑚)) |
25 | 22, 24 | oveq12d 6668 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) |
26 | 25 | cbvmptv 4750 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) |
27 | 26 | oveq1i 6660 | . . . 4 ⊢ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) limℂ 𝐵) |
28 | 19, 27 | syl6eleq 2711 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑥)) / ((𝑥 − 𝐵)↑𝑚))) limℂ 𝐵)) |
29 | 13, 14, 15, 16, 17, 11, 18, 28 | taylthlem2 24128 | . 2 ⊢ ((𝜑 ∧ (𝑚 ∈ (1..^𝑁) ∧ 0 ∈ ((𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑚))‘𝑦) − (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑚))‘𝑦)) / ((𝑦 − 𝐵)↑𝑚))) limℂ 𝐵))) → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑚 + 1)))‘𝑥) − (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑚 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑚 + 1)))) limℂ 𝐵)) |
30 | 2, 6, 7, 8, 9, 10, 11, 12, 29 | taylthlem1 24127 | 1 ⊢ (𝜑 → 0 ∈ (𝑅 limℂ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 ⊆ wss 3574 {csn 4177 {cpr 4179 ↦ cmpt 4729 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 − cmin 10266 / cdiv 10684 ℕcn 11020 ..^cfzo 12465 ↑cexp 12860 limℂ climc 23626 D𝑛 cdvn 23628 Tayl ctayl 24107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-fac 13061 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-mulg 17541 df-subg 17591 df-cntz 17750 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-subrg 18778 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-refld 19951 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-perf 20941 df-cn 21031 df-cnp 21032 df-haus 21119 df-cmp 21190 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-tsms 21930 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-0p 23437 df-limc 23630 df-dv 23631 df-dvn 23632 df-ply 23944 df-idp 23945 df-coe 23946 df-dgr 23947 df-tayl 24109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |