MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrelog Structured version   Visualization version   GIF version

Theorem dvrelog 24383
Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
dvrelog (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))

Proof of Theorem dvrelog
StepHypRef Expression
1 dfrelog 24312 . . 3 (log ↾ ℝ+) = (exp ↾ ℝ)
21oveq2i 6661 . 2 (ℝ D (log ↾ ℝ+)) = (ℝ D (exp ↾ ℝ))
3 reeff1o 24201 . . . . . . . . 9 (exp ↾ ℝ):ℝ–1-1-onto→ℝ+
4 f1of 6137 . . . . . . . . 9 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
53, 4ax-mp 5 . . . . . . . 8 (exp ↾ ℝ):ℝ⟶ℝ+
6 rpssre 11843 . . . . . . . 8 + ⊆ ℝ
7 fss 6056 . . . . . . . 8 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
85, 6, 7mp2an 708 . . . . . . 7 (exp ↾ ℝ):ℝ⟶ℝ
9 ax-resscn 9993 . . . . . . . 8 ℝ ⊆ ℂ
10 efcn 24197 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
11 rescncf 22700 . . . . . . . . 9 (ℝ ⊆ ℂ → (exp ∈ (ℂ–cn→ℂ) → (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)))
129, 10, 11mp2 9 . . . . . . . 8 (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)
13 cncffvrn 22701 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ (exp ↾ ℝ) ∈ (ℝ–cn→ℂ)) → ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ))
149, 12, 13mp2an 708 . . . . . . 7 ((exp ↾ ℝ) ∈ (ℝ–cn→ℝ) ↔ (exp ↾ ℝ):ℝ⟶ℝ)
158, 14mpbir 221 . . . . . 6 (exp ↾ ℝ) ∈ (ℝ–cn→ℝ)
1615a1i 11 . . . . 5 (⊤ → (exp ↾ ℝ) ∈ (ℝ–cn→ℝ))
17 reelprrecn 10028 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
18 eff 14812 . . . . . . . . . 10 exp:ℂ⟶ℂ
19 ssid 3624 . . . . . . . . . 10 ℂ ⊆ ℂ
20 dvef 23743 . . . . . . . . . . . . 13 (ℂ D exp) = exp
2120dmeqi 5325 . . . . . . . . . . . 12 dom (ℂ D exp) = dom exp
2218fdmi 6052 . . . . . . . . . . . 12 dom exp = ℂ
2321, 22eqtri 2644 . . . . . . . . . . 11 dom (ℂ D exp) = ℂ
249, 23sseqtr4i 3638 . . . . . . . . . 10 ℝ ⊆ dom (ℂ D exp)
25 dvres3 23677 . . . . . . . . . 10 (((ℝ ∈ {ℝ, ℂ} ∧ exp:ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D exp))) → (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ))
2617, 18, 19, 24, 25mp4an 709 . . . . . . . . 9 (ℝ D (exp ↾ ℝ)) = ((ℂ D exp) ↾ ℝ)
2720reseq1i 5392 . . . . . . . . 9 ((ℂ D exp) ↾ ℝ) = (exp ↾ ℝ)
2826, 27eqtri 2644 . . . . . . . 8 (ℝ D (exp ↾ ℝ)) = (exp ↾ ℝ)
2928dmeqi 5325 . . . . . . 7 dom (ℝ D (exp ↾ ℝ)) = dom (exp ↾ ℝ)
305fdmi 6052 . . . . . . 7 dom (exp ↾ ℝ) = ℝ
3129, 30eqtri 2644 . . . . . 6 dom (ℝ D (exp ↾ ℝ)) = ℝ
3231a1i 11 . . . . 5 (⊤ → dom (ℝ D (exp ↾ ℝ)) = ℝ)
33 0nrp 11865 . . . . . . 7 ¬ 0 ∈ ℝ+
3428rneqi 5352 . . . . . . . . 9 ran (ℝ D (exp ↾ ℝ)) = ran (exp ↾ ℝ)
35 f1ofo 6144 . . . . . . . . . 10 ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ–onto→ℝ+)
36 forn 6118 . . . . . . . . . 10 ((exp ↾ ℝ):ℝ–onto→ℝ+ → ran (exp ↾ ℝ) = ℝ+)
373, 35, 36mp2b 10 . . . . . . . . 9 ran (exp ↾ ℝ) = ℝ+
3834, 37eqtri 2644 . . . . . . . 8 ran (ℝ D (exp ↾ ℝ)) = ℝ+
3938eleq2i 2693 . . . . . . 7 (0 ∈ ran (ℝ D (exp ↾ ℝ)) ↔ 0 ∈ ℝ+)
4033, 39mtbir 313 . . . . . 6 ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ))
4140a1i 11 . . . . 5 (⊤ → ¬ 0 ∈ ran (ℝ D (exp ↾ ℝ)))
423a1i 11 . . . . 5 (⊤ → (exp ↾ ℝ):ℝ–1-1-onto→ℝ+)
4316, 32, 41, 42dvcnvre 23782 . . . 4 (⊤ → (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)))))
4443trud 1493 . . 3 (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥))))
4528fveq1i 6192 . . . . . 6 ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)) = ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥))
46 f1ocnvfv2 6533 . . . . . . 7 (((exp ↾ ℝ):ℝ–1-1-onto→ℝ+𝑥 ∈ ℝ+) → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
473, 46mpan 706 . . . . . 6 (𝑥 ∈ ℝ+ → ((exp ↾ ℝ)‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
4845, 47syl5eq 2668 . . . . 5 (𝑥 ∈ ℝ+ → ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)) = 𝑥)
4948oveq2d 6666 . . . 4 (𝑥 ∈ ℝ+ → (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥))) = (1 / 𝑥))
5049mpteq2ia 4740 . . 3 (𝑥 ∈ ℝ+ ↦ (1 / ((ℝ D (exp ↾ ℝ))‘((exp ↾ ℝ)‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
5144, 50eqtri 2644 . 2 (ℝ D (exp ↾ ℝ)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
522, 51eqtri 2644 1 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1483  wtru 1484  wcel 1990  wss 3574  {cpr 4179  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   / cdiv 10684  +crp 11832  expce 14792  cnccncf 22679   D cdv 23627  logclog 24301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by:  relogcn  24384  advlog  24400  advlogexp  24401  logccv  24409  dvcxp1  24481  loglesqrt  24499  logdivsum  25222  log2sumbnd  25233  logdivsqrle  30728
  Copyright terms: Public domain W3C validator