Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem59 Structured version   Visualization version   GIF version

Theorem fourierdlem59 40382
Description: The derivative of 𝐻 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem59.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem59.x (𝜑𝑋 ∈ ℝ)
fourierdlem59.a (𝜑𝐴 ∈ ℝ)
fourierdlem59.b (𝜑𝐵 ∈ ℝ)
fourierdlem59.n0 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
fourierdlem59.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
fourierdlem59.c (𝜑𝐶 ∈ ℝ)
fourierdlem59.h 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
Assertion
Ref Expression
fourierdlem59 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem59
StepHypRef Expression
1 fourierdlem59.f . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
21adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
3 fourierdlem59.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
43adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
5 elioore 12205 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
65adantl 482 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
74, 6readdcld 10069 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
82, 7ffvelrnd 6360 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
9 fourierdlem59.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
109adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
118, 10resubcld 10458 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
12 eqcom 2629 . . . . . . . . . . . 12 (𝑠 = 0 ↔ 0 = 𝑠)
1312biimpi 206 . . . . . . . . . . 11 (𝑠 = 0 → 0 = 𝑠)
1413adantl 482 . . . . . . . . . 10 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
15 simpl 473 . . . . . . . . . 10 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴(,)𝐵))
1614, 15eqeltrd 2701 . . . . . . . . 9 ((𝑠 ∈ (𝐴(,)𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
1716adantll 750 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴(,)𝐵))
18 fourierdlem59.n0 . . . . . . . . 9 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
1918ad2antrr 762 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴(,)𝐵))
2017, 19pm2.65da 600 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ¬ 𝑠 = 0)
2120neqned 2801 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
2211, 6, 21redivcld 10853 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ)
23 fourierdlem59.h . . . . 5 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
2422, 23fmptd 6385 . . . 4 (𝜑𝐻:(𝐴(,)𝐵)⟶ℝ)
25 ioossre 12235 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
2625a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
27 dvfre 23714 . . . 4 ((𝐻:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ)
2824, 26, 27syl2anc 693 . . 3 (𝜑 → (ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ)
29 ovex 6678 . . . . . . . . . 10 (𝐴(,)𝐵) ∈ V
3029a1i 11 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ∈ V)
31 eqidd 2623 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)))
32 eqidd 2623 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))
3330, 11, 6, 31, 32offval2 6914 . . . . . . . 8 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘𝑓 / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)))
3433, 23syl6reqr 2675 . . . . . . 7 (𝜑𝐻 = ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘𝑓 / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)))
3534oveq2d 6666 . . . . . 6 (𝜑 → (ℝ D 𝐻) = (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘𝑓 / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))))
36 reelprrecn 10028 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
3736a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
3811recnd 10068 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
39 eqid 2622 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))
4038, 39fmptd 6385 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)):(𝐴(,)𝐵)⟶ℂ)
416recnd 10068 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
42 eldifsn 4317 . . . . . . . . 9 (𝑠 ∈ (ℂ ∖ {0}) ↔ (𝑠 ∈ ℂ ∧ 𝑠 ≠ 0))
4341, 21, 42sylanbrc 698 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (ℂ ∖ {0}))
44 eqid 2622 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)
4543, 44fmptd 6385 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠):(𝐴(,)𝐵)⟶(ℂ ∖ {0}))
46 eqidd 2623 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))))
47 eqidd 2623 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))
4830, 8, 10, 46, 47offval2 6914 . . . . . . . . . 10 (𝜑 → ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘𝑓 − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)))
4948eqcomd 2628 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘𝑓 − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)))
5049oveq2d 6666 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘𝑓 − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))))
518recnd 10068 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
52 eqid 2622 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))
5351, 52fmptd 6385 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))):(𝐴(,)𝐵)⟶ℂ)
5410recnd 10068 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
55 eqid 2622 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)
5654, 55fmptd 6385 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶):(𝐴(,)𝐵)⟶ℂ)
57 fourierdlem59.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
58 fourierdlem59.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
59 eqid 2622 . . . . . . . . . . 11 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
60 fourierdlem59.fdv . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
61 cncff 22696 . . . . . . . . . . . 12 ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6260, 61syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
631, 3, 57, 58, 59, 62fourierdlem28 40352 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
64 ioosscn 39716 . . . . . . . . . . . 12 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℂ
6564a1i 11 . . . . . . . . . . 11 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℂ)
66 ax-resscn 9993 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
6766a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℂ)
6862, 67fssd 6057 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ)
69 ssid 3624 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℂ ⊆ ℂ)
71 cncffvrn 22701 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ) ↔ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ))
7270, 60, 71syl2anc 693 . . . . . . . . . . . 12 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ) ↔ (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℂ))
7368, 72mpbird 247 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℂ))
74 ioosscn 39716 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℂ
7574a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
763recnd 10068 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
773, 57readdcld 10069 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
7877rexrd 10089 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
7978adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
803, 58readdcld 10069 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
8180rexrd 10089 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
8281adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
8357adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
8483rexrd 10089 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
8558rexrd 10089 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
8685adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
87 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
88 ioogtlb 39717 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
8984, 86, 87, 88syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
9083, 6, 4, 89ltadd2dd 10196 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
9158adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
92 iooltub 39735 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
9384, 86, 87, 92syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
946, 91, 4, 93ltadd2dd 10196 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
9579, 82, 7, 90, 94eliood 39720 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
9665, 73, 75, 76, 95fourierdlem23 40347 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9763, 96eqeltrd 2701 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
98 iooretop 22569 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
99 eqid 2622 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10099tgioo2 22606 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
10198, 100eleqtri 2699 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
102101a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
1039recnd 10068 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
10437, 102, 103dvmptconst 40129 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
105 0cnd 10033 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
10675, 105, 70constcncfg 40084 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 0) ∈ ((𝐴(,)𝐵)–cn→ℂ))
107104, 106eqeltrd 2701 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10837, 53, 56, 97, 107dvsubcncf 40139 . . . . . . . 8 (𝜑 → (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠))) ∘𝑓 − (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
10950, 108eqeltrd 2701 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11037, 102dvmptidg 40131 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
111 1cnd 10056 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
11275, 111, 70constcncfg 40084 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
113110, 112eqeltrd 2701 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11437, 40, 45, 109, 113dvdivcncf 40142 . . . . . 6 (𝜑 → (ℝ D ((𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∘𝑓 / (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
11535, 114eqeltrd 2701 . . . . 5 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ))
116 cncff 22696 . . . . 5 ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℂ)
117 fdm 6051 . . . . 5 ((ℝ D 𝐻):(𝐴(,)𝐵)⟶ℂ → dom (ℝ D 𝐻) = (𝐴(,)𝐵))
118115, 116, 1173syl 18 . . . 4 (𝜑 → dom (ℝ D 𝐻) = (𝐴(,)𝐵))
119118feq2d 6031 . . 3 (𝜑 → ((ℝ D 𝐻):dom (ℝ D 𝐻)⟶ℝ ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
12028, 119mpbid 222 . 2 (𝜑 → (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ)
121 cncffvrn 22701 . . 3 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ)) → ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
12267, 115, 121syl2anc 693 . 2 (𝜑 → ((ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ) ↔ (ℝ D 𝐻):(𝐴(,)𝐵)⟶ℝ))
123120, 122mpbird 247 1 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  wss 3574  {csn 4177  {cpr 4179   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cmin 10266   / cdiv 10684  (,)cioo 12175  t crest 16081  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  cnccncf 22679   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem72  40395
  Copyright terms: Public domain W3C validator