| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem68.f |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 2 | | fourierdlem68.xre |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 3 | | fourierdlem68.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 4 | | fourierdlem68.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 5 | | fourierdlem68.fdv |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) |
| 6 | | ioossicc 12259 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 7 | | fourierdlem68.ab |
. . . . . . 7
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
| 8 | 6, 7 | syl5ss 3614 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π)) |
| 9 | | fourierdlem68.n0 |
. . . . . . 7
⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 10 | 6 | sseli 3599 |
. . . . . . 7
⊢ (0 ∈
(𝐴(,)𝐵) → 0 ∈ (𝐴[,]𝐵)) |
| 11 | 9, 10 | nsyl 135 |
. . . . . 6
⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) |
| 12 | | fourierdlem68.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 13 | | fourierdlem68.o |
. . . . . 6
⊢ 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
| 14 | 1, 2, 3, 4, 5, 8, 11, 12, 13 | fourierdlem57 40380 |
. . . . 5
⊢ ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) −
((cos‘(𝑠 / 2))
· ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧
(ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))) |
| 15 | 14 | simpli 474 |
. . . 4
⊢ (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) −
((cos‘(𝑠 / 2))
· ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 /
2)))↑2))))) |
| 16 | 15 | simpld 475 |
. . 3
⊢ (𝜑 → (ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ) |
| 17 | | fdm 6051 |
. . 3
⊢ ((ℝ
D 𝑂):(𝐴(,)𝐵)⟶ℝ → dom (ℝ D 𝑂) = (𝐴(,)𝐵)) |
| 18 | 16, 17 | syl 17 |
. 2
⊢ (𝜑 → dom (ℝ D 𝑂) = (𝐴(,)𝐵)) |
| 19 | | eqid 2622 |
. . . . . 6
⊢ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) |
| 20 | | fourierdlem68.altb |
. . . . . . 7
⊢ (𝜑 → 𝐴 < 𝐵) |
| 21 | 3, 4, 20 | ltled 10185 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 22 | | 2re 11090 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 23 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℝ) |
| 24 | 3, 4 | iccssred 39727 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 25 | 24 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ) |
| 26 | 25 | rehalfcld 11279 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 / 2) ∈ ℝ) |
| 27 | 26 | resincld 14873 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℝ) |
| 28 | 23, 27 | remulcld 10070 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈
ℝ) |
| 29 | | 2cnd 11093 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ) |
| 30 | 27 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℂ) |
| 31 | | 2ne0 11113 |
. . . . . . . . . . 11
⊢ 2 ≠
0 |
| 32 | 31 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 2 ≠ 0) |
| 33 | 7 | sselda 3603 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (-π[,]π)) |
| 34 | | eqcom 2629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 0 ↔ 0 = 𝑡) |
| 35 | 34 | biimpi 206 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 0 → 0 = 𝑡) |
| 36 | 35 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 = 𝑡) |
| 37 | | simpl 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 𝑡 ∈ (𝐴[,]𝐵)) |
| 38 | 36, 37 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵)) |
| 39 | 38 | adantll 750 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵)) |
| 40 | 9 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 41 | 39, 40 | pm2.65da 600 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → ¬ 𝑡 = 0) |
| 42 | 41 | neqned 2801 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ≠ 0) |
| 43 | | fourierdlem44 40368 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ (-π[,]π) ∧
𝑡 ≠ 0) →
(sin‘(𝑡 / 2)) ≠
0) |
| 44 | 33, 42, 43 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ≠ 0) |
| 45 | 29, 30, 32, 44 | mulne0d 10679 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ≠ 0) |
| 46 | | eldifsn 4317 |
. . . . . . . . 9
⊢ ((2
· (sin‘(𝑡 /
2))) ∈ (ℝ ∖ {0}) ↔ ((2 · (sin‘(𝑡 / 2))) ∈ ℝ ∧ (2
· (sin‘(𝑡 /
2))) ≠ 0)) |
| 47 | 28, 45, 46 | sylanbrc 698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖
{0})) |
| 48 | 47, 19 | fmptd 6385 |
. . . . . . 7
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖
{0})) |
| 49 | | difss 3737 |
. . . . . . . . . 10
⊢ (ℝ
∖ {0}) ⊆ ℝ |
| 50 | | ax-resscn 9993 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
| 51 | 49, 50 | sstri 3612 |
. . . . . . . . 9
⊢ (ℝ
∖ {0}) ⊆ ℂ |
| 52 | 51 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (ℝ ∖ {0})
⊆ ℂ) |
| 53 | 24, 50 | syl6ss 3615 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
| 54 | | 2cnd 11093 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
ℂ) |
| 55 | | ssid 3624 |
. . . . . . . . . . 11
⊢ ℂ
⊆ ℂ |
| 56 | 55 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 57 | 53, 54, 56 | constcncfg 40084 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 58 | | sincn 24198 |
. . . . . . . . . . 11
⊢ sin
∈ (ℂ–cn→ℂ) |
| 59 | 58 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → sin ∈
(ℂ–cn→ℂ)) |
| 60 | 53, 56 | idcncfg 40085 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 61 | | eldifsn 4317 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠
0)) |
| 62 | 29, 32, 61 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ (ℂ ∖
{0})) |
| 63 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) = (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) |
| 64 | 62, 63 | fmptd 6385 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖
{0})) |
| 65 | | difssd 3738 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℂ ∖ {0})
⊆ ℂ) |
| 66 | | cncffvrn 22701 |
. . . . . . . . . . . . 13
⊢
(((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖
{0}))) |
| 67 | 65, 57, 66 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖
{0}))) |
| 68 | 64, 67 | mpbird 247 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0}))) |
| 69 | 60, 68 | divcncf 23216 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 70 | 59, 69 | cncfmpt1f 22716 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑡 / 2))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 71 | 57, 70 | mulcncf 23215 |
. . . . . . . 8
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 72 | | cncffvrn 22701 |
. . . . . . . 8
⊢
(((ℝ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖
{0}))) |
| 73 | 52, 71, 72 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖
{0}))) |
| 74 | 48, 73 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0}))) |
| 75 | 19, 3, 4, 21, 74 | cncficcgt0 40101 |
. . . . 5
⊢ (𝜑 → ∃𝑐 ∈ ℝ+ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 /
2))))) |
| 76 | | reelprrecn 10028 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
| 77 | 76 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ ℝ ∈ {ℝ, ℂ}) |
| 78 | 1 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ) |
| 79 | 2 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ) |
| 80 | | elioore 12205 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ) |
| 81 | 80 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
| 82 | 79, 81 | readdcld 10069 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
| 83 | 78, 82 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
| 84 | 12 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ) |
| 85 | 83, 84 | resubcld 10458 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ) |
| 86 | 85 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ) |
| 87 | 86 | 3ad2antl1 1223 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ) |
| 88 | 76 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 89 | 83 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 90 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) |
| 91 | 2, 3 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 + 𝐴) ∈ ℝ) |
| 92 | 91 | rexrd 10089 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + 𝐴) ∈
ℝ*) |
| 93 | 92 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈
ℝ*) |
| 94 | 2, 4 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 + 𝐵) ∈ ℝ) |
| 95 | 94 | rexrd 10089 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + 𝐵) ∈
ℝ*) |
| 96 | 95 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈
ℝ*) |
| 97 | 3 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
| 98 | 97 | rexrd 10089 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈
ℝ*) |
| 99 | 4 | rexrd 10089 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 100 | 99 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈
ℝ*) |
| 101 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵)) |
| 102 | | ioogtlb 39717 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑠
∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) |
| 103 | 98, 100, 101, 102 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) |
| 104 | 97, 81, 79, 103 | ltadd2dd 10196 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠)) |
| 105 | 4 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
| 106 | | iooltub 39735 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑠
∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) |
| 107 | 98, 100, 101, 106 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) |
| 108 | 81, 105, 79, 107 | ltadd2dd 10196 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵)) |
| 109 | 93, 96, 82, 104, 108 | eliood 39720 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) |
| 110 | 90, 109 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℝ) |
| 111 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (ℝ
D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
| 112 | 1, 2, 3, 4, 111, 5 | fourierdlem28 40352 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))) |
| 113 | 84 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ) |
| 114 | | 0red 10041 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ) |
| 115 | | iooretop 22569 |
. . . . . . . . . . . . 13
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
| 116 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 117 | 116 | tgioo2 22606 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 118 | 115, 117 | eleqtri 2699 |
. . . . . . . . . . . 12
⊢ (𝐴(,)𝐵) ∈
((TopOpen‘ℂfld) ↾t
ℝ) |
| 119 | 118 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴(,)𝐵) ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
| 120 | 12 | recnd 10068 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 121 | 88, 119, 120 | dvmptconst 40129 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0)) |
| 122 | 88, 89, 110, 112, 113, 114, 121 | dvmptsub 23730 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0))) |
| 123 | 110 | recnd 10068 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ) |
| 124 | 123 | subid1d 10381 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) |
| 125 | 124 | mpteq2dva 4744 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))) |
| 126 | 122, 125 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))) |
| 127 | 126 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ (ℝ D (𝑠 ∈
(𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))) |
| 128 | 123 | 3ad2antl1 1223 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ) |
| 129 | | 2cnd 11093 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ) |
| 130 | 80 | recnd 10068 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ) |
| 131 | 130 | halfcld 11277 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ) |
| 132 | 131 | sincld 14860 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ) |
| 133 | 129, 132 | mulcld 10060 |
. . . . . . . 8
⊢ (𝑠 ∈ (𝐴(,)𝐵) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
| 134 | 133 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
| 135 | | fourierdlem68.e |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 136 | 135 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ 𝐸 ∈
ℝ) |
| 137 | | 1re 10039 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 138 | 22, 137 | remulcli 10054 |
. . . . . . . 8
⊢ (2
· 1) ∈ ℝ |
| 139 | 138 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ (2 · 1) ∈ ℝ) |
| 140 | | 1red 10055 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ 1 ∈ ℝ) |
| 141 | | fourierdlem68.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 142 | 120 | abscld 14175 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝐶) ∈
ℝ) |
| 143 | 141, 142 | readdcld 10069 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 + (abs‘𝐶)) ∈ ℝ) |
| 144 | 143 | 3ad2ant1 1082 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ (𝐷 +
(abs‘𝐶)) ∈
ℝ) |
| 145 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝜑) |
| 146 | 145, 109 | jca 554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
| 147 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑋 + 𝑠) → (𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↔ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
| 148 | 147 | anbi2d 740 |
. . . . . . . . . . 11
⊢ (𝑡 = (𝑋 + 𝑠) → ((𝜑 ∧ 𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ↔ (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))) |
| 149 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑋 + 𝑠) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) |
| 150 | 149 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑋 + 𝑠) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))) |
| 151 | 150 | breq1d 4663 |
. . . . . . . . . . 11
⊢ (𝑡 = (𝑋 + 𝑠) → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)) |
| 152 | 148, 151 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑡 = (𝑋 + 𝑠) → (((𝜑 ∧ 𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))) |
| 153 | | fourierdlem68.fdvbd |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸) |
| 154 | 152, 153 | vtoclg 3266 |
. . . . . . . . 9
⊢ ((𝑋 + 𝑠) ∈ ℝ → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)) |
| 155 | 82, 146, 154 | sylc 65 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸) |
| 156 | 155 | 3ad2antl1 1223 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸) |
| 157 | 129, 132 | absmuld 14193 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 ·
(sin‘(𝑠 / 2)))) =
((abs‘2) · (abs‘(sin‘(𝑠 / 2))))) |
| 158 | | 0le2 11111 |
. . . . . . . . . . . 12
⊢ 0 ≤
2 |
| 159 | | absid 14036 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) |
| 160 | 22, 158, 159 | mp2an 708 |
. . . . . . . . . . 11
⊢
(abs‘2) = 2 |
| 161 | 160 | oveq1i 6660 |
. . . . . . . . . 10
⊢
((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) = (2 ·
(abs‘(sin‘(𝑠 /
2)))) |
| 162 | 132 | abscld 14175 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ∈
ℝ) |
| 163 | | 1red 10055 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 1 ∈ ℝ) |
| 164 | 22 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℝ) |
| 165 | 158 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 0 ≤ 2) |
| 166 | 80 | rehalfcld 11279 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℝ) |
| 167 | | abssinbd 39509 |
. . . . . . . . . . . 12
⊢ ((𝑠 / 2) ∈ ℝ →
(abs‘(sin‘(𝑠 /
2))) ≤ 1) |
| 168 | 166, 167 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ≤ 1) |
| 169 | 162, 163,
164, 165, 168 | lemul2ad 10964 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (𝐴(,)𝐵) → (2 ·
(abs‘(sin‘(𝑠 /
2)))) ≤ (2 · 1)) |
| 170 | 161, 169 | syl5eqbr 4688 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝐴(,)𝐵) → ((abs‘2) ·
(abs‘(sin‘(𝑠 /
2)))) ≤ (2 · 1)) |
| 171 | 157, 170 | eqbrtrd 4675 |
. . . . . . . 8
⊢ (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 ·
(sin‘(𝑠 / 2)))) ≤
(2 · 1)) |
| 172 | 171 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(2 ·
(sin‘(𝑠 / 2)))) ≤
(2 · 1)) |
| 173 | | abscosbd 39490 |
. . . . . . . . 9
⊢ ((𝑠 / 2) ∈ ℝ →
(abs‘(cos‘(𝑠 /
2))) ≤ 1) |
| 174 | 101, 166,
173 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1) |
| 175 | 174 | 3ad2antl1 1223 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1) |
| 176 | 86 | abscld 14175 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ ℝ) |
| 177 | 89 | abscld 14175 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ∈ ℝ) |
| 178 | 113 | abscld 14175 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘𝐶) ∈ ℝ) |
| 179 | 177, 178 | readdcld 10069 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ∈ ℝ) |
| 180 | 141 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℝ) |
| 181 | 180, 178 | readdcld 10069 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐷 + (abs‘𝐶)) ∈ ℝ) |
| 182 | 89, 113 | abs2dif2d 14197 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶))) |
| 183 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝑋 + 𝑠) → (𝐹‘𝑡) = (𝐹‘(𝑋 + 𝑠))) |
| 184 | 183 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (𝑋 + 𝑠) → (abs‘(𝐹‘𝑡)) = (abs‘(𝐹‘(𝑋 + 𝑠)))) |
| 185 | 184 | breq1d 4663 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (𝑋 + 𝑠) → ((abs‘(𝐹‘𝑡)) ≤ 𝐷 ↔ (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)) |
| 186 | 148, 185 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑡 = (𝑋 + 𝑠) → (((𝜑 ∧ 𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘𝑡)) ≤ 𝐷) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))) |
| 187 | | fourierdlem68.fbd |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘𝑡)) ≤ 𝐷) |
| 188 | 186, 187 | vtoclg 3266 |
. . . . . . . . . . 11
⊢ ((𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)) |
| 189 | 109, 146,
188 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷) |
| 190 | 177, 180,
178, 189 | leadd1dd 10641 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ≤ (𝐷 + (abs‘𝐶))) |
| 191 | 176, 179,
181, 182, 190 | letrd 10194 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶))) |
| 192 | 191 | 3ad2antl1 1223 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶))) |
| 193 | 14 | simpri 478 |
. . . . . . . 8
⊢ (ℝ
D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))) |
| 194 | 193 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ (ℝ D (𝑠 ∈
(𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))) |
| 195 | 131 | coscld 14861 |
. . . . . . . 8
⊢ (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ) |
| 196 | 195 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ) |
| 197 | | simp2 1062 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ 𝑐 ∈
ℝ+) |
| 198 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2)) |
| 199 | 198 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2))) |
| 200 | 199 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 ·
(sin‘(𝑠 /
2)))) |
| 201 | 200 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑠 → (abs‘(2 ·
(sin‘(𝑡 / 2)))) =
(abs‘(2 · (sin‘(𝑠 / 2))))) |
| 202 | 201 | breq2d 4665 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑠 → (𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2))))
↔ 𝑐 ≤ (abs‘(2
· (sin‘(𝑠 /
2)))))) |
| 203 | 202 | cbvralv 3171 |
. . . . . . . . 9
⊢
(∀𝑡 ∈
(𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2))))
↔ ∀𝑠 ∈
(𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 /
2))))) |
| 204 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑠𝜑 |
| 205 | | nfra1 2941 |
. . . . . . . . . . 11
⊢
Ⅎ𝑠∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 /
2)))) |
| 206 | 204, 205 | nfan 1828 |
. . . . . . . . . 10
⊢
Ⅎ𝑠(𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 /
2))))) |
| 207 | | simplr 792 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 /
2))))) |
| 208 | 6, 101 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵)) |
| 209 | 208 | adantlr 751 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵)) |
| 210 | | rspa 2930 |
. . . . . . . . . . . 12
⊢
((∀𝑠 ∈
(𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 / 2)))) ∧
𝑠 ∈ (𝐴[,]𝐵)) → 𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 /
2))))) |
| 211 | 207, 209,
210 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 / 2)))))
∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 /
2))))) |
| 212 | 211 | ex 450 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 / 2)))))
→ (𝑠 ∈ (𝐴(,)𝐵) → 𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 /
2)))))) |
| 213 | 206, 212 | ralrimi 2957 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 / 2)))))
→ ∀𝑠 ∈
(𝐴(,)𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 /
2))))) |
| 214 | 203, 213 | sylan2b 492 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ ∀𝑠 ∈
(𝐴(,)𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 /
2))))) |
| 215 | 214 | 3adant2 1080 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ ∀𝑠 ∈
(𝐴(,)𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑠 /
2))))) |
| 216 | | eqid 2622 |
. . . . . . 7
⊢ (ℝ
D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
| 217 | 77, 87, 127, 128, 134, 136, 139, 140, 144, 156, 172, 175, 192, 194, 196, 197, 215, 216 | dvdivbd 40138 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2)))))
→ ∃𝑏 ∈
ℝ ∀𝑠 ∈
(𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏) |
| 218 | 217 | rexlimdv3a 3033 |
. . . . 5
⊢ (𝜑 → (∃𝑐 ∈ ℝ+ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 ·
(sin‘(𝑡 / 2))))
→ ∃𝑏 ∈
ℝ ∀𝑠 ∈
(𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)) |
| 219 | 75, 218 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏) |
| 220 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑠ℝ |
| 221 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑠
D |
| 222 | | nfmpt1 4747 |
. . . . . . . . . 10
⊢
Ⅎ𝑠(𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
| 223 | 13, 222 | nfcxfr 2762 |
. . . . . . . . 9
⊢
Ⅎ𝑠𝑂 |
| 224 | 220, 221,
223 | nfov 6676 |
. . . . . . . 8
⊢
Ⅎ𝑠(ℝ D 𝑂) |
| 225 | 224 | nfdm 5367 |
. . . . . . 7
⊢
Ⅎ𝑠dom
(ℝ D 𝑂) |
| 226 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑠(𝐴(,)𝐵) |
| 227 | 225, 226 | raleqf 3134 |
. . . . . 6
⊢ (dom
(ℝ D 𝑂) = (𝐴(,)𝐵) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)) |
| 228 | 18, 227 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)) |
| 229 | 228 | rexbidv 3052 |
. . . 4
⊢ (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)) |
| 230 | 219, 229 | mpbird 247 |
. . 3
⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏) |
| 231 | 13 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
| 232 | 231 | oveq2d 6666 |
. . . . . . 7
⊢ (𝜑 → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))) |
| 233 | 232 | fveq1d 6193 |
. . . . . 6
⊢ (𝜑 → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) |
| 234 | 233 | fveq2d 6195 |
. . . . 5
⊢ (𝜑 → (abs‘((ℝ D
𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))) |
| 235 | 234 | breq1d 4663 |
. . . 4
⊢ (𝜑 → ((abs‘((ℝ D
𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)) |
| 236 | 235 | rexralbidv 3058 |
. . 3
⊢ (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)) |
| 237 | 230, 236 | mpbird 247 |
. 2
⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏) |
| 238 | 18, 237 | jca 554 |
1
⊢ (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)) |