Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgiccshift Structured version   Visualization version   GIF version

Theorem itgiccshift 40196
Description: The integral of a function, 𝐹 stays the same if its closed interval domain is shifted by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgiccshift.a (𝜑𝐴 ∈ ℝ)
itgiccshift.b (𝜑𝐵 ∈ ℝ)
itgiccshift.aleb (𝜑𝐴𝐵)
itgiccshift.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
itgiccshift.t (𝜑𝑇 ∈ ℝ+)
itgiccshift.g 𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇)))
Assertion
Ref Expression
itgiccshift (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑇   𝜑,𝑥

Proof of Theorem itgiccshift
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgiccshift.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 itgiccshift.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 itgiccshift.t . . . . . 6 (𝜑𝑇 ∈ ℝ+)
43rpred 11872 . . . . 5 (𝜑𝑇 ∈ ℝ)
5 itgiccshift.aleb . . . . 5 (𝜑𝐴𝐵)
61, 2, 4, 5leadd1dd 10641 . . . 4 (𝜑 → (𝐴 + 𝑇) ≤ (𝐵 + 𝑇))
76ditgpos 23620 . . 3 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐺𝑥) d𝑥 = ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐺𝑥) d𝑥)
81, 4readdcld 10069 . . . 4 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
92, 4readdcld 10069 . . . 4 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
10 itgiccshift.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
11 cncff 22696 . . . . . . . . 9 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
1210, 11syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
1312adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
141adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ)
152adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ)
168adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
179adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
18 simpr 477 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
19 eliccre 39728 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
2016, 17, 18, 19syl3anc 1326 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
214adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
2220, 21resubcld 10458 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
231recnd 10068 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
244recnd 10068 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
2523, 24pncand 10393 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
2625eqcomd 2628 . . . . . . . . . 10 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
2726adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
28 elicc2 12238 . . . . . . . . . . . . 13 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
2916, 17, 28syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
3018, 29mpbid 222 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇)))
3130simp2d 1074 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
3216, 20, 21, 31lesub1dd 10643 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) ≤ (𝑥𝑇))
3327, 32eqbrtrd 4675 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥𝑇))
3430simp3d 1075 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
3520, 17, 21, 34lesub1dd 10643 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ ((𝐵 + 𝑇) − 𝑇))
362recnd 10068 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
3736, 24pncand 10393 . . . . . . . . . 10 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
3837adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
3935, 38breqtrd 4679 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ 𝐵)
4014, 15, 22, 33, 39eliccd 39726 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
4113, 40ffvelrnd 6360 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹‘(𝑥𝑇)) ∈ ℂ)
42 itgiccshift.g . . . . . 6 𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇)))
4341, 42fmptd 6385 . . . . 5 (𝜑𝐺:((𝐴 + 𝑇)[,](𝐵 + 𝑇))⟶ℂ)
4443ffvelrnda 6359 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐺𝑥) ∈ ℂ)
458, 9, 44itgioo 23582 . . 3 (𝜑 → ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥)
467, 45eqtr2d 2657 . 2 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐺𝑥) d𝑥)
47 eqid 2622 . . . 4 (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) = (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇))
4847addccncf 22719 . . . . 5 (𝑇 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
4924, 48syl 17 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
501, 2iccssred 39727 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
51 ax-resscn 9993 . . . . 5 ℝ ⊆ ℂ
5250, 51syl6ss 3615 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
538, 9iccssred 39727 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℝ)
5453, 51syl6ss 3615 . . . 4 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℂ)
558adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
569adantr 481 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
5750sselda 3603 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
584adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
5957, 58readdcld 10069 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ℝ)
601adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
61 simpr 477 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
622adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
63 elicc2 12238 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
6460, 62, 63syl2anc 693 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
6561, 64mpbid 222 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
6665simp2d 1074 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
6760, 57, 58, 66leadd1dd 10641 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑦 + 𝑇))
6865simp3d 1075 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
6957, 62, 58, 68leadd1dd 10641 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ≤ (𝐵 + 𝑇))
7055, 56, 59, 67, 69eliccd 39726 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
7147, 49, 52, 54, 70cncfmptssg 40083 . . 3 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
72 oveq1 6657 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥𝑇) = (𝑤𝑇))
7372fveq2d 6195 . . . . . . . 8 (𝑥 = 𝑤 → (𝐹‘(𝑥𝑇)) = (𝐹‘(𝑤𝑇)))
7473cbvmptv 4750 . . . . . . 7 (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇))) = (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇)))
751, 2, 4iccshift 39744 . . . . . . . 8 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)})
7675mpteq1d 4738 . . . . . . 7 (𝜑 → (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇))) = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))))
7774, 76syl5eq 2668 . . . . . 6 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥𝑇))) = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))))
7842, 77syl5eq 2668 . . . . 5 (𝜑𝐺 = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))))
79 eqeq1 2626 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
8079rexbidv 3052 . . . . . . . . 9 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
81 oveq1 6657 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
8281eqeq2d 2632 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
8382cbvrexv 3172 . . . . . . . . 9 (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇))
8480, 83syl6bb 276 . . . . . . . 8 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)))
8584cbvrabv 3199 . . . . . . 7 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}
8685eqcomi 2631 . . . . . 6 {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}
87 eqid 2622 . . . . . 6 (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))) = (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇)))
8852, 24, 86, 10, 87cncfshift 40087 . . . . 5 (𝜑 → (𝑤 ∈ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} ↦ (𝐹‘(𝑤𝑇))) ∈ ({𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}–cn→ℂ))
8978, 88eqeltrd 2701 . . . 4 (𝜑𝐺 ∈ ({𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}–cn→ℂ))
9043feqmptd 6249 . . . 4 (𝜑𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐺𝑥)))
9175eqcomd 2628 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)} = ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
9291oveq1d 6665 . . . 4 (𝜑 → ({𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}–cn→ℂ) = (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
9389, 90, 923eltr3d 2715 . . 3 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐺𝑥)) ∈ (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
94 ioosscn 39716 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
9594a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
96 1cnd 10056 . . . . 5 (𝜑 → 1 ∈ ℂ)
97 ssid 3624 . . . . . 6 ℂ ⊆ ℂ
9897a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
9995, 96, 98constcncfg 40084 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
100 fconstmpt 5163 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
101 ioombl 23333 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
102101a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
103 ioovolcl 23338 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
1041, 2, 103syl2anc 693 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
105 iblconst 23584 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
106102, 104, 96, 105syl3anc 1326 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
107100, 106syl5eqelr 2706 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
10899, 107elind 3798 . . 3 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
10950resmptd 5452 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)) = (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)))
110109eqcomd 2628 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) = ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)))
111110oveq2d 6666 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))))
11251a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
113112sselda 3603 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
11424adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℂ)
115113, 114addcld 10059 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑇) ∈ ℂ)
116 eqid 2622 . . . . . . 7 (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) = (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))
117115, 116fmptd 6385 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ)
118 ssid 3624 . . . . . . 7 ℝ ⊆ ℝ
119118a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℝ)
120 eqid 2622 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
121120tgioo2 22606 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
122120, 121dvres 23675 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
123112, 117, 119, 50, 122syl22anc 1327 . . . . 5 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
124111, 123eqtrd 2656 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
125 iccntr 22624 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1261, 2, 125syl2anc 693 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
127126reseq2d 5396 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)))
128 reelprrecn 10028 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
129128a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
130 1cnd 10056 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
131129dvmptid 23720 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
132 0cnd 10033 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℂ)
133129, 24dvmptc 23721 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑇)) = (𝑦 ∈ ℝ ↦ 0))
134129, 113, 130, 131, 114, 132, 133dvmptadd 23723 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) = (𝑦 ∈ ℝ ↦ (1 + 0)))
135134reseq1d 5395 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)))
136 ioossre 12235 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
137136a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
138137resmptd 5452 . . . . 5 (𝜑 → ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)))
139 1p0e1 11133 . . . . . . 7 (1 + 0) = 1
140139mpteq2i 4741 . . . . . 6 (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
141140a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
142135, 138, 1413eqtrd 2660 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
143124, 127, 1423eqtrd 2660 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
144 fveq2 6191 . . 3 (𝑥 = (𝑦 + 𝑇) → (𝐺𝑥) = (𝐺‘(𝑦 + 𝑇)))
145 oveq1 6657 . . 3 (𝑦 = 𝐴 → (𝑦 + 𝑇) = (𝐴 + 𝑇))
146 oveq1 6657 . . 3 (𝑦 = 𝐵 → (𝑦 + 𝑇) = (𝐵 + 𝑇))
1471, 2, 5, 71, 93, 108, 143, 144, 145, 146, 8, 9itgsubsticc 40192 . 2 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐺𝑥) d𝑥 = ⨜[𝐴𝐵]((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦)
1485ditgpos 23620 . . 3 (𝜑 → ⨜[𝐴𝐵]((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴(,)𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦)
14943adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐺:((𝐴 + 𝑇)[,](𝐵 + 𝑇))⟶ℂ)
150149, 70ffvelrnd 6360 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐺‘(𝑦 + 𝑇)) ∈ ℂ)
151 1cnd 10056 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
152150, 151mulcld 10060 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐺‘(𝑦 + 𝑇)) · 1) ∈ ℂ)
1531, 2, 152itgioo 23582 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦)
154 oveq1 6657 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 + 𝑇) = (𝑥 + 𝑇))
155154fveq2d 6195 . . . . . 6 (𝑦 = 𝑥 → (𝐺‘(𝑦 + 𝑇)) = (𝐺‘(𝑥 + 𝑇)))
156155oveq1d 6665 . . . . 5 (𝑦 = 𝑥 → ((𝐺‘(𝑦 + 𝑇)) · 1) = ((𝐺‘(𝑥 + 𝑇)) · 1))
157156cbvitgv 23543 . . . 4 ∫(𝐴[,]𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐺‘(𝑥 + 𝑇)) · 1) d𝑥
15843adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐺:((𝐴 + 𝑇)[,](𝐵 + 𝑇))⟶ℂ)
1598adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
1609adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
16150sselda 3603 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
1624adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
163161, 162readdcld 10069 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ℝ)
1641adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
1651rexrd 10089 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
166165adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
1672rexrd 10089 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
168167adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
169 simpr 477 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
170 iccgelb 12230 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
171166, 168, 169, 170syl3anc 1326 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
172164, 161, 162, 171leadd1dd 10641 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑥 + 𝑇))
1732adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
174 iccleub 12229 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
175166, 168, 169, 174syl3anc 1326 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
176161, 173, 162, 175leadd1dd 10641 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ≤ (𝐵 + 𝑇))
177159, 160, 163, 172, 176eliccd 39726 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
178158, 177ffvelrnd 6360 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐺‘(𝑥 + 𝑇)) ∈ ℂ)
179178mulid1d 10057 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐺‘(𝑥 + 𝑇)) · 1) = (𝐺‘(𝑥 + 𝑇)))
18042, 74eqtri 2644 . . . . . . . 8 𝐺 = (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇)))
181180a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐺 = (𝑤 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑤𝑇))))
182 oveq1 6657 . . . . . . . . 9 (𝑤 = (𝑥 + 𝑇) → (𝑤𝑇) = ((𝑥 + 𝑇) − 𝑇))
183182fveq2d 6195 . . . . . . . 8 (𝑤 = (𝑥 + 𝑇) → (𝐹‘(𝑤𝑇)) = (𝐹‘((𝑥 + 𝑇) − 𝑇)))
184161recnd 10068 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
18524adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℂ)
186184, 185pncand 10393 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑥 + 𝑇) − 𝑇) = 𝑥)
187186fveq2d 6195 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘((𝑥 + 𝑇) − 𝑇)) = (𝐹𝑥))
188183, 187sylan9eqr 2678 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑤 = (𝑥 + 𝑇)) → (𝐹‘(𝑤𝑇)) = (𝐹𝑥))
18912ffvelrnda 6359 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
190181, 188, 177, 189fvmptd 6288 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐺‘(𝑥 + 𝑇)) = (𝐹𝑥))
191179, 190eqtrd 2656 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐺‘(𝑥 + 𝑇)) · 1) = (𝐹𝑥))
192191itgeq2dv 23548 . . . 4 (𝜑 → ∫(𝐴[,]𝐵)((𝐺‘(𝑥 + 𝑇)) · 1) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
193157, 192syl5eq 2668 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
194148, 153, 1933eqtrd 2660 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐺‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
19546, 147, 1943eqtrd 2660 1 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  wss 3574  {csn 4177  {cpr 4179   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073  cle 10075  cmin 10266  +crp 11832  (,)cioo 12175  [,]cicc 12178  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  intcnt 20821  cnccncf 22679  volcvol 23232  𝐿1cibl 23386  citg 23387  cdit 23610   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem81  40404
  Copyright terms: Public domain W3C validator