Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsbtaddcnst Structured version   Visualization version   GIF version

Theorem itgsbtaddcnst 40198
Description: Integral substitution, adding a constant to the function's argument. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsbtaddcnst.a (𝜑𝐴 ∈ ℝ)
itgsbtaddcnst.b (𝜑𝐵 ∈ ℝ)
itgsbtaddcnst.aleb (𝜑𝐴𝐵)
itgsbtaddcnst.x (𝜑𝑋 ∈ ℝ)
itgsbtaddcnst.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
itgsbtaddcnst (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
Distinct variable groups:   𝐴,𝑠,𝑡   𝐵,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡   𝜑,𝑠,𝑡

Proof of Theorem itgsbtaddcnst
StepHypRef Expression
1 itgsbtaddcnst.a . . 3 (𝜑𝐴 ∈ ℝ)
2 itgsbtaddcnst.b . . 3 (𝜑𝐵 ∈ ℝ)
3 itgsbtaddcnst.aleb . . 3 (𝜑𝐴𝐵)
41, 2iccssred 39727 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
54sselda 3603 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ)
65recnd 10068 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ)
7 itgsbtaddcnst.x . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
87recnd 10068 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
98adantr 481 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℂ)
106, 9negsubd 10398 . . . . . 6 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 + -𝑋) = (𝑡𝑋))
1110eqcomd 2628 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) = (𝑡 + -𝑋))
1211mpteq2dva 4744 . . . 4 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)))
131adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
147adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
1513, 14resubcld 10458 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴𝑋) ∈ ℝ)
162adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
1716, 14resubcld 10458 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐵𝑋) ∈ ℝ)
185, 14resubcld 10458 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ℝ)
19 simpr 477 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
201, 2jca 554 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
2120adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
22 elicc2 12238 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵)))
2321, 22syl 17 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵)))
2419, 23mpbid 222 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝐵))
2524simp2d 1074 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝐴𝑡)
2613, 5, 14, 25lesub1dd 10643 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴𝑋) ≤ (𝑡𝑋))
2724simp3d 1075 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡𝐵)
285, 16, 14, 27lesub1dd 10643 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ≤ (𝐵𝑋))
2915, 17, 18, 26, 28eliccd 39726 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ((𝐴𝑋)[,](𝐵𝑋)))
30 eqid 2622 . . . . . . 7 (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))
3129, 30fmptd 6385 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋)))
3212, 31feq1dd 39347 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋)))
331, 7resubcld 10458 . . . . . . . 8 (𝜑 → (𝐴𝑋) ∈ ℝ)
342, 7resubcld 10458 . . . . . . . 8 (𝜑 → (𝐵𝑋) ∈ ℝ)
3533, 34iccssred 39727 . . . . . . 7 (𝜑 → ((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℝ)
36 ax-resscn 9993 . . . . . . 7 ℝ ⊆ ℂ
3735, 36syl6ss 3615 . . . . . 6 (𝜑 → ((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℂ)
384, 36syl6ss 3615 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
3938resmptd 5452 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)))
40 ssid 3624 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
41 cncfmptid 22715 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
4240, 40, 41mp2an 708 . . . . . . . . . . . 12 (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)
4342a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
4440a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ℂ ⊆ ℂ)
45 id 22 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
4644, 45, 44constcncfg 40084 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ))
4743, 46subcncf 40082 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
488, 47syl 17 . . . . . . . . 9 (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ))
49 rescncf 22700 . . . . . . . . 9 ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)))
5038, 48, 49sylc 65 . . . . . . . 8 (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5139, 50eqeltrrd 2702 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5212, 51eqeltrrd 2702 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
53 cncffvrn 22701 . . . . . 6 ((((𝐴𝑋)[,](𝐵𝑋)) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋))))
5437, 52, 53syl2anc 693 . . . . 5 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴𝑋)[,](𝐵𝑋))))
5532, 54mpbird 247 . . . 4 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))))
5612, 55eqeltrd 2701 . . 3 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴𝑋)[,](𝐵𝑋))))
57 eqid 2622 . . . . 5 (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠))
588adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ℂ) → 𝑋 ∈ ℂ)
59 simpr 477 . . . . . . . 8 ((𝜑𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
6058, 59addcomd 10238 . . . . . . 7 ((𝜑𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋))
6160mpteq2dva 4744 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)))
62 eqid 2622 . . . . . . . 8 (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))
6362addccncf 22719 . . . . . . 7 (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
648, 63syl 17 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
6561, 64eqeltrd 2701 . . . . 5 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ))
661adantr 481 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ∈ ℝ)
672adantr 481 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐵 ∈ ℝ)
687adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑋 ∈ ℝ)
6935sselda 3603 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ∈ ℝ)
7068, 69readdcld 10069 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ∈ ℝ)
71 simpr 477 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)))
7233adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ∈ ℝ)
7334adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐵𝑋) ∈ ℝ)
74 elicc2 12238 . . . . . . . . . 10 (((𝐴𝑋) ∈ ℝ ∧ (𝐵𝑋) ∈ ℝ) → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋))))
7572, 73, 74syl2anc 693 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋))))
7671, 75mpbid 222 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑠 ∈ ℝ ∧ (𝐴𝑋) ≤ 𝑠𝑠 ≤ (𝐵𝑋)))
7776simp2d 1074 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝐴𝑋) ≤ 𝑠)
7866, 68, 69lesubadd2d 10626 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝐴𝑋) ≤ 𝑠𝐴 ≤ (𝑋 + 𝑠)))
7977, 78mpbid 222 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝐴 ≤ (𝑋 + 𝑠))
8076simp3d 1075 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → 𝑠 ≤ (𝐵𝑋))
8168, 69, 67leaddsub2d 10629 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → ((𝑋 + 𝑠) ≤ 𝐵𝑠 ≤ (𝐵𝑋)))
8280, 81mpbird 247 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ≤ 𝐵)
8366, 67, 70, 79, 82eliccd 39726 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋))) → (𝑋 + 𝑠) ∈ (𝐴[,]𝐵))
8457, 65, 37, 38, 83cncfmptssg 40083 . . . 4 (𝜑 → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝑋 + 𝑠)) ∈ (((𝐴𝑋)[,](𝐵𝑋))–cn→(𝐴[,]𝐵)))
85 itgsbtaddcnst.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
8684, 85cncfcompt 40096 . . 3 (𝜑 → (𝑠 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝐴𝑋)[,](𝐵𝑋))–cn→ℂ))
87 ax-1cn 9994 . . . . . 6 1 ∈ ℂ
88 ioosscn 39716 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
89 cncfmptc 22714 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
9087, 88, 40, 89mp3an 1424 . . . . 5 (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)
9190a1i 11 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
92 fconstmpt 5163 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)
93 ioombl 23333 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
9493a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
95 volioo 23337 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
961, 2, 3, 95syl3anc 1326 . . . . . . 7 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
972, 1resubcld 10458 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
9896, 97eqeltrd 2701 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
99 1cnd 10056 . . . . . 6 (𝜑 → 1 ∈ ℂ)
100 iblconst 23584 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10194, 98, 99, 100syl3anc 1326 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
10292, 101syl5eqelr 2706 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
10391, 102elind 3798 . . 3 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
10436a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
10518recnd 10068 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡𝑋) ∈ ℂ)
106 eqid 2622 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
107106tgioo2 22606 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
108 iccntr 22624 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
10920, 108syl 17 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
110104, 4, 105, 107, 106, 109dvmptntr 23734 . . . 4 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))) = (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑋))))
111 reelprrecn 10028 . . . . . 6 ℝ ∈ {ℝ, ℂ}
112111a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
113 ioossre 12235 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
114113sseli 3599 . . . . . . 7 (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ ℝ)
115114adantl 482 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℝ)
116115recnd 10068 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℂ)
117 1cnd 10056 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ)
118104sselda 3603 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
119 1cnd 10056 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 1 ∈ ℂ)
120112dvmptid 23720 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
121113a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
122 iooretop 22569 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
123122a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
124112, 118, 119, 120, 121, 107, 106, 123dvmptres 23726 . . . . 5 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑡)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
1258adantr 481 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ)
126 0cnd 10033 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ)
1278adantr 481 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝑋 ∈ ℂ)
128 0cnd 10033 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 0 ∈ ℂ)
129112, 8dvmptc 23721 . . . . . 6 (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑋)) = (𝑡 ∈ ℝ ↦ 0))
130112, 127, 128, 129, 121, 107, 106, 123dvmptres 23726 . . . . 5 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 0))
131112, 116, 117, 124, 125, 126, 130dvmptsub 23730 . . . 4 (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)))
132117subid1d 10381 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (1 − 0) = 1)
133132mpteq2dva 4744 . . . 4 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
134110, 131, 1333eqtrd 2660 . . 3 (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1))
135 oveq2 6658 . . . 4 (𝑠 = (𝑡𝑋) → (𝑋 + 𝑠) = (𝑋 + (𝑡𝑋)))
136135fveq2d 6195 . . 3 (𝑠 = (𝑡𝑋) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑡𝑋))))
137 oveq1 6657 . . 3 (𝑡 = 𝐴 → (𝑡𝑋) = (𝐴𝑋))
138 oveq1 6657 . . 3 (𝑡 = 𝐵 → (𝑡𝑋) = (𝐵𝑋))
1391, 2, 3, 56, 86, 103, 134, 136, 137, 138, 33, 34itgsubsticc 40192 . 2 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵]((𝐹‘(𝑋 + (𝑡𝑋))) · 1) d𝑡)
140125, 116pncan3d 10395 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝑋 + (𝑡𝑋)) = 𝑡)
141140fveq2d 6195 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + (𝑡𝑋))) = (𝐹𝑡))
142141oveq1d 6665 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡𝑋))) · 1) = ((𝐹𝑡) · 1))
143 cncff 22696 . . . . . . . 8 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
14485, 143syl 17 . . . . . . 7 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
145144adantr 481 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
146 ioossicc 12259 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
147146sseli 3599 . . . . . . 7 (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ (𝐴[,]𝐵))
148147adantl 482 . . . . . 6 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
149145, 148ffvelrnd 6360 . . . . 5 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ℂ)
150149mulid1d 10057 . . . 4 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹𝑡) · 1) = (𝐹𝑡))
151142, 150eqtrd 2656 . . 3 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡𝑋))) · 1) = (𝐹𝑡))
1523, 151ditgeq3d 40180 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑋 + (𝑡𝑋))) · 1) d𝑡 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
153139, 152eqtrd 2656 1 (𝜑 → ⨜[(𝐴𝑋) → (𝐵𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴𝐵](𝐹𝑡) d𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  {csn 4177  {cpr 4179   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  -cneg 10267  (,)cioo 12175  [,]cicc 12178  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  intcnt 20821  cnccncf 22679  volcvol 23232  𝐿1cibl 23386  cdit 23610   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem82  40405
  Copyright terms: Public domain W3C validator