Proof of Theorem itgsbtaddcnst
| Step | Hyp | Ref
| Expression |
| 1 | | itgsbtaddcnst.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | | itgsbtaddcnst.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 3 | | itgsbtaddcnst.aleb |
. . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 4 | 1, 2 | iccssred 39727 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 5 | 4 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ) |
| 6 | 5 | recnd 10068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℂ) |
| 7 | | itgsbtaddcnst.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 8 | 7 | recnd 10068 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 9 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℂ) |
| 10 | 6, 9 | negsubd 10398 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 + -𝑋) = (𝑡 − 𝑋)) |
| 11 | 10 | eqcomd 2628 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) = (𝑡 + -𝑋)) |
| 12 | 11 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋))) |
| 13 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
| 14 | 7 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ) |
| 15 | 13, 14 | resubcld 10458 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑋) ∈ ℝ) |
| 16 | 2 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
| 17 | 16, 14 | resubcld 10458 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐵 − 𝑋) ∈ ℝ) |
| 18 | 5, 14 | resubcld 10458 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ∈ ℝ) |
| 19 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵)) |
| 20 | 1, 2 | jca 554 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 21 | 20 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 22 | | elicc2 12238 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵))) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴[,]𝐵) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵))) |
| 24 | 19, 23 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝐵)) |
| 25 | 24 | simp2d 1074 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑡) |
| 26 | 13, 5, 14, 25 | lesub1dd 10643 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑋) ≤ (𝑡 − 𝑋)) |
| 27 | 24 | simp3d 1075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ≤ 𝐵) |
| 28 | 5, 16, 14, 27 | lesub1dd 10643 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ≤ (𝐵 − 𝑋)) |
| 29 | 15, 17, 18, 26, 28 | eliccd 39726 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) |
| 30 | | eqid 2622 |
. . . . . . 7
⊢ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) |
| 31 | 29, 30 | fmptd 6385 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋))) |
| 32 | 12, 31 | feq1dd 39347 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋))) |
| 33 | 1, 7 | resubcld 10458 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 − 𝑋) ∈ ℝ) |
| 34 | 2, 7 | resubcld 10458 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℝ) |
| 35 | 33, 34 | iccssred 39727 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ⊆ ℝ) |
| 36 | | ax-resscn 9993 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
| 37 | 35, 36 | syl6ss 3615 |
. . . . . 6
⊢ (𝜑 → ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ⊆ ℂ) |
| 38 | 4, 36 | syl6ss 3615 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
| 39 | 38 | resmptd 5452 |
. . . . . . . 8
⊢ (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ↾ (𝐴[,]𝐵)) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋))) |
| 40 | | ssid 3624 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
| 41 | | cncfmptid 22715 |
. . . . . . . . . . . . 13
⊢ ((ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)) |
| 42 | 40, 40, 41 | mp2an 708 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ) |
| 43 | 42 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)) |
| 44 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ℂ
⊆ ℂ) |
| 45 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → 𝑋 ∈
ℂ) |
| 46 | 44, 45, 44 | constcncfg 40084 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ)) |
| 47 | 43, 46 | subcncf 40082 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 48 | 8, 47 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 49 | | rescncf 22700 |
. . . . . . . . 9
⊢ ((𝐴[,]𝐵) ⊆ ℂ → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ∈ (ℂ–cn→ℂ) → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
| 50 | 38, 48, 49 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → ((𝑡 ∈ ℂ ↦ (𝑡 − 𝑋)) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 51 | 39, 50 | eqeltrrd 2702 |
. . . . . . 7
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 52 | 12, 51 | eqeltrrd 2702 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 53 | | cncffvrn 22701 |
. . . . . 6
⊢ ((((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) |
| 54 | 37, 52, 53 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋))) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)):(𝐴[,]𝐵)⟶((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) |
| 55 | 32, 54 | mpbird 247 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 + -𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) |
| 56 | 12, 55 | eqeltrd 2701 |
. . 3
⊢ (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 − 𝑋)[,](𝐵 − 𝑋)))) |
| 57 | | eqid 2622 |
. . . . 5
⊢ (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) |
| 58 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑋 ∈ ℂ) |
| 59 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ) |
| 60 | 58, 59 | addcomd 10238 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋)) |
| 61 | 60 | mpteq2dva 4744 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))) |
| 62 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) |
| 63 | 62 | addccncf 22719 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 64 | 8, 63 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ)) |
| 65 | 61, 64 | eqeltrd 2701 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ)) |
| 66 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝐴 ∈ ℝ) |
| 67 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝐵 ∈ ℝ) |
| 68 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑋 ∈ ℝ) |
| 69 | 35 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑠 ∈ ℝ) |
| 70 | 68, 69 | readdcld 10069 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑋 + 𝑠) ∈ ℝ) |
| 71 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) |
| 72 | 33 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐴 − 𝑋) ∈ ℝ) |
| 73 | 34 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐵 − 𝑋) ∈ ℝ) |
| 74 | | elicc2 12238 |
. . . . . . . . . 10
⊢ (((𝐴 − 𝑋) ∈ ℝ ∧ (𝐵 − 𝑋) ∈ ℝ) → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴 − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (𝐵 − 𝑋)))) |
| 75 | 72, 73, 74 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↔ (𝑠 ∈ ℝ ∧ (𝐴 − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (𝐵 − 𝑋)))) |
| 76 | 71, 75 | mpbid 222 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑠 ∈ ℝ ∧ (𝐴 − 𝑋) ≤ 𝑠 ∧ 𝑠 ≤ (𝐵 − 𝑋))) |
| 77 | 76 | simp2d 1074 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝐴 − 𝑋) ≤ 𝑠) |
| 78 | 66, 68, 69 | lesubadd2d 10626 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → ((𝐴 − 𝑋) ≤ 𝑠 ↔ 𝐴 ≤ (𝑋 + 𝑠))) |
| 79 | 77, 78 | mpbid 222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝐴 ≤ (𝑋 + 𝑠)) |
| 80 | 76 | simp3d 1075 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → 𝑠 ≤ (𝐵 − 𝑋)) |
| 81 | 68, 69, 67 | leaddsub2d 10629 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → ((𝑋 + 𝑠) ≤ 𝐵 ↔ 𝑠 ≤ (𝐵 − 𝑋))) |
| 82 | 80, 81 | mpbird 247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑋 + 𝑠) ≤ 𝐵) |
| 83 | 66, 67, 70, 79, 82 | eliccd 39726 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋))) → (𝑋 + 𝑠) ∈ (𝐴[,]𝐵)) |
| 84 | 57, 65, 37, 38, 83 | cncfmptssg 40083 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↦ (𝑋 + 𝑠)) ∈ (((𝐴 − 𝑋)[,](𝐵 − 𝑋))–cn→(𝐴[,]𝐵))) |
| 85 | | itgsbtaddcnst.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 86 | 84, 85 | cncfcompt 40096 |
. . 3
⊢ (𝜑 → (𝑠 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝐴 − 𝑋)[,](𝐵 − 𝑋))–cn→ℂ)) |
| 87 | | ax-1cn 9994 |
. . . . . 6
⊢ 1 ∈
ℂ |
| 88 | | ioosscn 39716 |
. . . . . 6
⊢ (𝐴(,)𝐵) ⊆ ℂ |
| 89 | | cncfmptc 22714 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ (𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑡 ∈
(𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 90 | 87, 88, 40, 89 | mp3an 1424 |
. . . . 5
⊢ (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ) |
| 91 | 90 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 92 | | fconstmpt 5163 |
. . . . 5
⊢ ((𝐴(,)𝐵) × {1}) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) |
| 93 | | ioombl 23333 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈ dom vol |
| 94 | 93 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈ dom vol) |
| 95 | | volioo 23337 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 96 | 1, 2, 3, 95 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 97 | 2, 1 | resubcld 10458 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 98 | 96, 97 | eqeltrd 2701 |
. . . . . 6
⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
| 99 | | 1cnd 10056 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
| 100 | | iblconst 23584 |
. . . . . 6
⊢ (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ)
→ ((𝐴(,)𝐵) × {1}) ∈
𝐿1) |
| 101 | 94, 98, 99, 100 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → ((𝐴(,)𝐵) × {1}) ∈
𝐿1) |
| 102 | 92, 101 | syl5eqelr 2706 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈
𝐿1) |
| 103 | 91, 102 | elind 3798 |
. . 3
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩
𝐿1)) |
| 104 | 36 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 105 | 18 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 − 𝑋) ∈ ℂ) |
| 106 | | eqid 2622 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 107 | 106 | tgioo2 22606 |
. . . . 5
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 108 | | iccntr 22624 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 109 | 20, 108 | syl 17 |
. . . . 5
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 110 | 104, 4, 105, 107, 106, 109 | dvmptntr 23734 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋))) = (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡 − 𝑋)))) |
| 111 | | reelprrecn 10028 |
. . . . . 6
⊢ ℝ
∈ {ℝ, ℂ} |
| 112 | 111 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 113 | | ioossre 12235 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 114 | 113 | sseli 3599 |
. . . . . . 7
⊢ (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ ℝ) |
| 115 | 114 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℝ) |
| 116 | 115 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ ℂ) |
| 117 | | 1cnd 10056 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 1 ∈ ℂ) |
| 118 | 104 | sselda 3603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ) |
| 119 | | 1cnd 10056 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 1 ∈
ℂ) |
| 120 | 112 | dvmptid 23720 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1)) |
| 121 | 113 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 122 | | iooretop 22569 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
| 123 | 122 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran
(,))) |
| 124 | 112, 118,
119, 120, 121, 107, 106, 123 | dvmptres 23726 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑡)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 125 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ) |
| 126 | | 0cnd 10033 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 0 ∈ ℂ) |
| 127 | 8 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 𝑋 ∈ ℂ) |
| 128 | | 0cnd 10033 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 0 ∈
ℂ) |
| 129 | 112, 8 | dvmptc 23721 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑡 ∈ ℝ ↦ 𝑋)) = (𝑡 ∈ ℝ ↦ 0)) |
| 130 | 112, 127,
128, 129, 121, 107, 106, 123 | dvmptres 23726 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 0)) |
| 131 | 112, 116,
117, 124, 125, 126, 130 | dvmptsub 23730 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝑡 − 𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0))) |
| 132 | 117 | subid1d 10381 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (1 − 0) =
1) |
| 133 | 132 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (1 − 0)) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 134 | 110, 131,
133 | 3eqtrd 2660 |
. . 3
⊢ (𝜑 → (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 − 𝑋))) = (𝑡 ∈ (𝐴(,)𝐵) ↦ 1)) |
| 135 | | oveq2 6658 |
. . . 4
⊢ (𝑠 = (𝑡 − 𝑋) → (𝑋 + 𝑠) = (𝑋 + (𝑡 − 𝑋))) |
| 136 | 135 | fveq2d 6195 |
. . 3
⊢ (𝑠 = (𝑡 − 𝑋) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑡 − 𝑋)))) |
| 137 | | oveq1 6657 |
. . 3
⊢ (𝑡 = 𝐴 → (𝑡 − 𝑋) = (𝐴 − 𝑋)) |
| 138 | | oveq1 6657 |
. . 3
⊢ (𝑡 = 𝐵 → (𝑡 − 𝑋) = (𝐵 − 𝑋)) |
| 139 | 1, 2, 3, 56, 86, 103, 134, 136, 137, 138, 33, 34 | itgsubsticc 40192 |
. 2
⊢ (𝜑 → ⨜[(𝐴 − 𝑋) → (𝐵 − 𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴 → 𝐵]((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) d𝑡) |
| 140 | 125, 116 | pncan3d 10395 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝑋 + (𝑡 − 𝑋)) = 𝑡) |
| 141 | 140 | fveq2d 6195 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + (𝑡 − 𝑋))) = (𝐹‘𝑡)) |
| 142 | 141 | oveq1d 6665 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) = ((𝐹‘𝑡) · 1)) |
| 143 | | cncff 22696 |
. . . . . . . 8
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 144 | 85, 143 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 145 | 144 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 146 | | ioossicc 12259 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 147 | 146 | sseli 3599 |
. . . . . . 7
⊢ (𝑡 ∈ (𝐴(,)𝐵) → 𝑡 ∈ (𝐴[,]𝐵)) |
| 148 | 147 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → 𝑡 ∈ (𝐴[,]𝐵)) |
| 149 | 145, 148 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑡) ∈ ℂ) |
| 150 | 149 | mulid1d 10057 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘𝑡) · 1) = (𝐹‘𝑡)) |
| 151 | 142, 150 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) = (𝐹‘𝑡)) |
| 152 | 3, 151 | ditgeq3d 40180 |
. 2
⊢ (𝜑 → ⨜[𝐴 → 𝐵]((𝐹‘(𝑋 + (𝑡 − 𝑋))) · 1) d𝑡 = ⨜[𝐴 → 𝐵](𝐹‘𝑡) d𝑡) |
| 153 | 139, 152 | eqtrd 2656 |
1
⊢ (𝜑 → ⨜[(𝐴 − 𝑋) → (𝐵 − 𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴 → 𝐵](𝐹‘𝑡) d𝑡) |