Proof of Theorem fourierdlem72
| Step | Hyp | Ref
| Expression |
| 1 | | ovex 6678 |
. . . . . 6
⊢ (𝐴(,)𝐵) ∈ V |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴(,)𝐵) ∈ V) |
| 3 | | fourierdlem72.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 4 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ) |
| 5 | | fourierdlem72.xre |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 6 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ) |
| 7 | | elioore 12205 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ) |
| 8 | 7 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
| 9 | 6, 8 | readdcld 10069 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
| 10 | 4, 9 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
| 11 | | fourierdlem72.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 12 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ) |
| 13 | 10, 12 | resubcld 10458 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ) |
| 14 | | ioossicc 12259 |
. . . . . . . . . . . 12
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 15 | 14 | sseli 3599 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (𝐴[,]𝐵)) |
| 16 | 15 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 𝑠 ∈ (𝐴[,]𝐵)) |
| 17 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑠 ≠ 0 → 𝑠 ≠ 0) |
| 18 | 17 | necon1bi 2822 |
. . . . . . . . . . . 12
⊢ (¬
𝑠 ≠ 0 → 𝑠 = 0) |
| 19 | 18 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (¬
𝑠 ≠ 0 → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵))) |
| 20 | 19 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵))) |
| 21 | 16, 20 | mpbid 222 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 ∈ (𝐴[,]𝐵)) |
| 22 | | fourierdlem72.n0 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 23 | 22 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 24 | 21, 23 | condan 835 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0) |
| 25 | 13, 8, 24 | redivcld 10853 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ) |
| 26 | | fourierdlem72.h |
. . . . . . 7
⊢ 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) |
| 27 | 25, 26 | fmptd 6385 |
. . . . . 6
⊢ (𝜑 → 𝐻:(𝐴(,)𝐵)⟶ℝ) |
| 28 | 27 | ffvelrnda 6359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐻‘𝑠) ∈ ℝ) |
| 29 | | 2re 11090 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ) |
| 31 | 8 | rehalfcld 11279 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ) |
| 32 | 31 | resincld 14873 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ) |
| 33 | 30, 32 | remulcld 10070 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈
ℝ) |
| 34 | | 2cnd 11093 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ) |
| 35 | 8 | recnd 10068 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ) |
| 36 | 35 | halfcld 11277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ) |
| 37 | 36 | sincld 14860 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ) |
| 38 | | 2ne0 11113 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
| 39 | 38 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0) |
| 40 | | fourierdlem72.ab |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π)) |
| 41 | 40 | sselda 3603 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π)) |
| 42 | | fourierdlem44 40368 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ (-π[,]π) ∧
𝑠 ≠ 0) →
(sin‘(𝑠 / 2)) ≠
0) |
| 43 | 41, 24, 42 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0) |
| 44 | 34, 37, 39, 43 | mulne0d 10679 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0) |
| 45 | 8, 33, 44 | redivcld 10853 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ) |
| 46 | | fourierdlem72.k |
. . . . . . 7
⊢ 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) |
| 47 | 45, 46 | fmptd 6385 |
. . . . . 6
⊢ (𝜑 → 𝐾:(𝐴(,)𝐵)⟶ℝ) |
| 48 | 47 | ffvelrnda 6359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐾‘𝑠) ∈ ℝ) |
| 49 | 27 | feqmptd 6249 |
. . . . 5
⊢ (𝜑 → 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻‘𝑠))) |
| 50 | 47 | feqmptd 6249 |
. . . . 5
⊢ (𝜑 → 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾‘𝑠))) |
| 51 | 2, 28, 48, 49, 50 | offval2 6914 |
. . . 4
⊢ (𝜑 → (𝐻 ∘𝑓 · 𝐾) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠)))) |
| 52 | | fourierdlem72.o |
. . . 4
⊢ 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) |
| 53 | 51, 52 | syl6reqr 2675 |
. . 3
⊢ (𝜑 → 𝑂 = (𝐻 ∘𝑓 · 𝐾)) |
| 54 | 53 | oveq2d 6666 |
. 2
⊢ (𝜑 → (ℝ D 𝑂) = (ℝ D (𝐻 ∘𝑓
· 𝐾))) |
| 55 | | reelprrecn 10028 |
. . . 4
⊢ ℝ
∈ {ℝ, ℂ} |
| 56 | 55 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 57 | 10 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 58 | 11 | recnd 10068 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 59 | 58 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ) |
| 60 | 57, 59 | subcld 10392 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ) |
| 61 | | ioossre 12235 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 62 | 61 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 63 | 62 | sselda 3603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
| 64 | 63 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ) |
| 65 | 60, 64, 24 | divcld 10801 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℂ) |
| 66 | 65, 26 | fmptd 6385 |
. . 3
⊢ (𝜑 → 𝐻:(𝐴(,)𝐵)⟶ℂ) |
| 67 | 64 | halfcld 11277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ) |
| 68 | 67 | sincld 14860 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ) |
| 69 | 34, 68 | mulcld 10060 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
| 70 | 64, 69, 44 | divcld 10801 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ) |
| 71 | 70, 46 | fmptd 6385 |
. . 3
⊢ (𝜑 → 𝐾:(𝐴(,)𝐵)⟶ℂ) |
| 72 | | ax-resscn 9993 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
| 73 | 72 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 74 | | ssid 3624 |
. . . . . 6
⊢ ℂ
⊆ ℂ |
| 75 | 74 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 76 | | cncfss 22702 |
. . . . 5
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)) |
| 77 | 73, 75, 76 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)) |
| 78 | | fourierdlem72.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 79 | | fourierdlem72.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 80 | 24 | nelrdva 3417 |
. . . . 5
⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) |
| 81 | 3, 73 | fssd 6057 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
| 82 | | ssid 3624 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ |
| 83 | 82 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ⊆
ℝ) |
| 84 | | ioossre 12235 |
. . . . . . . . 9
⊢ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ |
| 85 | 84 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ) |
| 86 | | eqid 2622 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 87 | 86 | tgioo2 22606 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 88 | 86, 87 | dvres 23675 |
. . . . . . . 8
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ
⊆ ℝ ∧ ((𝑋 +
𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)) → (ℝ D
(𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))) |
| 89 | 73, 81, 83, 85, 88 | syl22anc 1327 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))) |
| 90 | | ioontr 39736 |
. . . . . . . 8
⊢
((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) |
| 91 | 90 | reseq2i 5393 |
. . . . . . 7
⊢ ((ℝ
D 𝐹) ↾
((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) |
| 92 | 89, 91 | syl6eq 2672 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
| 93 | | fourierdlem72.v |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
| 94 | | fourierdlem72.m |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 95 | | fourierdlem72.p |
. . . . . . . . . . . . . . . . 17
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 96 | 95 | fourierdlem2 40326 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 97 | 94, 96 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 98 | 93, 97 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
| 99 | 98 | simpld 475 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑉 ∈ (ℝ ↑𝑚
(0...𝑀))) |
| 100 | | elmapi 7879 |
. . . . . . . . . . . . 13
⊢ (𝑉 ∈ (ℝ
↑𝑚 (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ) |
| 101 | 99, 100 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
| 102 | | fourierdlem72.u |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ (0..^𝑀)) |
| 103 | | elfzofz 12485 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (0..^𝑀) → 𝑈 ∈ (0...𝑀)) |
| 104 | 102, 103 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ∈ (0...𝑀)) |
| 105 | 101, 104 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉‘𝑈) ∈ ℝ) |
| 106 | 105 | rexrd 10089 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉‘𝑈) ∈
ℝ*) |
| 107 | | fzofzp1 12565 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (0..^𝑀) → (𝑈 + 1) ∈ (0...𝑀)) |
| 108 | 102, 107 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 + 1) ∈ (0...𝑀)) |
| 109 | 101, 108 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ) |
| 110 | 109 | rexrd 10089 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉‘(𝑈 + 1)) ∈
ℝ*) |
| 111 | | pire 24210 |
. . . . . . . . . . . . . . 15
⊢ π
∈ ℝ |
| 112 | 111 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → π ∈
ℝ) |
| 113 | 112 | renegcld 10457 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -π ∈
ℝ) |
| 114 | | fourierdlem72.q |
. . . . . . . . . . . . 13
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
| 115 | 113, 112,
5, 95, 94, 93, 104, 114 | fourierdlem13 40337 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑄‘𝑈) = ((𝑉‘𝑈) − 𝑋) ∧ (𝑉‘𝑈) = (𝑋 + (𝑄‘𝑈)))) |
| 116 | 115 | simprd 479 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉‘𝑈) = (𝑋 + (𝑄‘𝑈))) |
| 117 | 115 | simpld 475 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘𝑈) = ((𝑉‘𝑈) − 𝑋)) |
| 118 | 105, 5 | resubcld 10458 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑉‘𝑈) − 𝑋) ∈ ℝ) |
| 119 | 117, 118 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘𝑈) ∈ ℝ) |
| 120 | 113, 112,
5, 95, 94, 93, 108, 114 | fourierdlem13 40337 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋) ∧ (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1))))) |
| 121 | 120 | simpld 475 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋)) |
| 122 | 109, 5 | resubcld 10458 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑉‘(𝑈 + 1)) − 𝑋) ∈ ℝ) |
| 123 | 121, 122 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘(𝑈 + 1)) ∈ ℝ) |
| 124 | | fourierdlem72.altb |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 < 𝐵) |
| 125 | | fourierdlem72.abss |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1)))) |
| 126 | 119, 123,
78, 79, 124, 125 | fourierdlem10 40334 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄‘𝑈) ≤ 𝐴 ∧ 𝐵 ≤ (𝑄‘(𝑈 + 1)))) |
| 127 | 126 | simpld 475 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘𝑈) ≤ 𝐴) |
| 128 | 119, 78, 5, 127 | leadd2dd 10642 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 + (𝑄‘𝑈)) ≤ (𝑋 + 𝐴)) |
| 129 | 116, 128 | eqbrtrd 4675 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑉‘𝑈) ≤ (𝑋 + 𝐴)) |
| 130 | 126 | simprd 479 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≤ (𝑄‘(𝑈 + 1))) |
| 131 | 79, 123, 5, 130 | leadd2dd 10642 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 + 𝐵) ≤ (𝑋 + (𝑄‘(𝑈 + 1)))) |
| 132 | 120 | simprd 479 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1)))) |
| 133 | 131, 132 | breqtrrd 4681 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1))) |
| 134 | | ioossioo 12265 |
. . . . . . . . . 10
⊢ ((((𝑉‘𝑈) ∈ ℝ* ∧ (𝑉‘(𝑈 + 1)) ∈ ℝ*) ∧
((𝑉‘𝑈) ≤ (𝑋 + 𝐴) ∧ (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))) → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) |
| 135 | 106, 110,
129, 133, 134 | syl22anc 1327 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) |
| 136 | 135 | resabs1d 5428 |
. . . . . . . 8
⊢ (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
| 137 | 136 | eqcomd 2628 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
| 138 | 102 | ancli 574 |
. . . . . . . . 9
⊢ (𝜑 → (𝜑 ∧ 𝑈 ∈ (0..^𝑀))) |
| 139 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀))) |
| 140 | 139 | anbi2d 740 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑈 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑈 ∈ (0..^𝑀)))) |
| 141 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑈 → (𝑉‘𝑖) = (𝑉‘𝑈)) |
| 142 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1)) |
| 143 | 142 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑈 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝑈 + 1))) |
| 144 | 141, 143 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑈 → ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) |
| 145 | 144 | reseq2d 5396 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑈 → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1))))) |
| 146 | 144 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑈 → (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) = (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)) |
| 147 | 145, 146 | eleq12d 2695 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑈 → (((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))) |
| 148 | 140, 147 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑈 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) ↔ ((𝜑 ∧ 𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))) |
| 149 | | fourierdlem72.dvcn |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) |
| 150 | 148, 149 | vtoclg 3266 |
. . . . . . . . 9
⊢ (𝑈 ∈ (0..^𝑀) → ((𝜑 ∧ 𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))) |
| 151 | 102, 138,
150 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)) |
| 152 | | rescncf 22700 |
. . . . . . . 8
⊢ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ) → (((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))) |
| 153 | 135, 151,
152 | sylc 65 |
. . . . . . 7
⊢ (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉‘𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) |
| 154 | 137, 153 | eqeltrd 2701 |
. . . . . 6
⊢ (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) |
| 155 | 92, 154 | eqeltrd 2701 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)) |
| 156 | 3, 5, 78, 79, 80, 155, 11, 26 | fourierdlem59 40382 |
. . . 4
⊢ (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
| 157 | 77, 156 | sseldd 3604 |
. . 3
⊢ (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 158 | | iooretop 22569 |
. . . . . 6
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
| 159 | 158 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran
(,))) |
| 160 | 46, 40, 80, 159 | fourierdlem58 40381 |
. . . 4
⊢ (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
| 161 | 77, 160 | sseldd 3604 |
. . 3
⊢ (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 162 | 56, 66, 71, 157, 161 | dvmulcncf 40140 |
. 2
⊢ (𝜑 → (ℝ D (𝐻 ∘𝑓
· 𝐾)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 163 | 54, 162 | eqeltrd 2701 |
1
⊢ (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |