Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem72 Structured version   Visualization version   GIF version

Theorem fourierdlem72 40395
Description: The derivative of 𝑂 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem72.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem72.xre (𝜑𝑋 ∈ ℝ)
fourierdlem72.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem72.m (𝜑𝑀 ∈ ℕ)
fourierdlem72.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem72.dvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem72.a (𝜑𝐴 ∈ ℝ)
fourierdlem72.b (𝜑𝐵 ∈ ℝ)
fourierdlem72.altb (𝜑𝐴 < 𝐵)
fourierdlem72.ab (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
fourierdlem72.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem72.c (𝜑𝐶 ∈ ℝ)
fourierdlem72.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem72.u (𝜑𝑈 ∈ (0..^𝑀))
fourierdlem72.abss (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
fourierdlem72.h 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
fourierdlem72.k 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
fourierdlem72.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠)))
Assertion
Ref Expression
fourierdlem72 (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝑖,𝐹   𝐹,𝑠   𝐻,𝑠   𝐾,𝑠   𝑖,𝑀,𝑚,𝑝   𝑈,𝑖   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝜑,𝑖   𝜑,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖,𝑚,𝑝)   𝐵(𝑖,𝑚,𝑝)   𝐶(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑖,𝑚,𝑠,𝑝)   𝑈(𝑚,𝑠,𝑝)   𝐹(𝑚,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝐾(𝑖,𝑚,𝑝)   𝑀(𝑠)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚,𝑠)

Proof of Theorem fourierdlem72
StepHypRef Expression
1 ovex 6678 . . . . . 6 (𝐴(,)𝐵) ∈ V
21a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ V)
3 fourierdlem72.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
43adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
5 fourierdlem72.xre . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
65adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
7 elioore 12205 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
87adantl 482 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
96, 8readdcld 10069 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
104, 9ffvelrnd 6360 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
11 fourierdlem72.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
1211adantr 481 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
1310, 12resubcld 10458 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
14 ioossicc 12259 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
1514sseli 3599 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ (𝐴[,]𝐵))
1615ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 𝑠 ∈ (𝐴[,]𝐵))
17 id 22 . . . . . . . . . . . . 13 (𝑠 ≠ 0 → 𝑠 ≠ 0)
1817necon1bi 2822 . . . . . . . . . . . 12 𝑠 ≠ 0 → 𝑠 = 0)
1918eleq1d 2686 . . . . . . . . . . 11 𝑠 ≠ 0 → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵)))
2019adantl 482 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → (𝑠 ∈ (𝐴[,]𝐵) ↔ 0 ∈ (𝐴[,]𝐵)))
2116, 20mpbid 222 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 ∈ (𝐴[,]𝐵))
22 fourierdlem72.n0 . . . . . . . . . 10 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
2322ad2antrr 762 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴(,)𝐵)) ∧ ¬ 𝑠 ≠ 0) → ¬ 0 ∈ (𝐴[,]𝐵))
2421, 23condan 835 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ≠ 0)
2513, 8, 24redivcld 10853 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℝ)
26 fourierdlem72.h . . . . . . 7 𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠))
2725, 26fmptd 6385 . . . . . 6 (𝜑𝐻:(𝐴(,)𝐵)⟶ℝ)
2827ffvelrnda 6359 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐻𝑠) ∈ ℝ)
29 2re 11090 . . . . . . . . . 10 2 ∈ ℝ
3029a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℝ)
318rehalfcld 11279 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℝ)
3231resincld 14873 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℝ)
3330, 32remulcld 10070 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
34 2cnd 11093 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ∈ ℂ)
358recnd 10068 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
3635halfcld 11277 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
3736sincld 14860 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
38 2ne0 11113 . . . . . . . . . 10 2 ≠ 0
3938a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 2 ≠ 0)
40 fourierdlem72.ab . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
4140sselda 3603 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (-π[,]π))
42 fourierdlem44 40368 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
4341, 24, 42syl2anc 693 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
4434, 37, 39, 43mulne0d 10679 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
458, 33, 44redivcld 10853 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
46 fourierdlem72.k . . . . . . 7 𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
4745, 46fmptd 6385 . . . . . 6 (𝜑𝐾:(𝐴(,)𝐵)⟶ℝ)
4847ffvelrnda 6359 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐾𝑠) ∈ ℝ)
4927feqmptd 6249 . . . . 5 (𝜑𝐻 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐻𝑠)))
5047feqmptd 6249 . . . . 5 (𝜑𝐾 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐾𝑠)))
512, 28, 48, 49, 50offval2 6914 . . . 4 (𝜑 → (𝐻𝑓 · 𝐾) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠))))
52 fourierdlem72.o . . . 4 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐻𝑠) · (𝐾𝑠)))
5351, 52syl6reqr 2675 . . 3 (𝜑𝑂 = (𝐻𝑓 · 𝐾))
5453oveq2d 6666 . 2 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝐻𝑓 · 𝐾)))
55 reelprrecn 10028 . . . 4 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
5710recnd 10068 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
5811recnd 10068 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5958adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
6057, 59subcld 10392 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
61 ioossre 12235 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
6261a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
6362sselda 3603 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
6463recnd 10068 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
6560, 64, 24divcld 10801 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℂ)
6665, 26fmptd 6385 . . 3 (𝜑𝐻:(𝐴(,)𝐵)⟶ℂ)
6764halfcld 11277 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / 2) ∈ ℂ)
6867sincld 14860 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
6934, 68mulcld 10060 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
7064, 69, 44divcld 10801 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
7170, 46fmptd 6385 . . 3 (𝜑𝐾:(𝐴(,)𝐵)⟶ℂ)
72 ax-resscn 9993 . . . . . 6 ℝ ⊆ ℂ
7372a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
74 ssid 3624 . . . . . 6 ℂ ⊆ ℂ
7574a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
76 cncfss 22702 . . . . 5 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
7773, 75, 76syl2anc 693 . . . 4 (𝜑 → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ))
78 fourierdlem72.a . . . . 5 (𝜑𝐴 ∈ ℝ)
79 fourierdlem72.b . . . . 5 (𝜑𝐵 ∈ ℝ)
8024nelrdva 3417 . . . . 5 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
813, 73fssd 6057 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℂ)
82 ssid 3624 . . . . . . . . 9 ℝ ⊆ ℝ
8382a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ)
84 ioossre 12235 . . . . . . . . 9 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ
8584a1i 11 . . . . . . . 8 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)
86 eqid 2622 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
8786tgioo2 22606 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
8886, 87dvres 23675 . . . . . . . 8 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
8973, 81, 83, 85, 88syl22anc 1327 . . . . . . 7 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
90 ioontr 39736 . . . . . . . 8 ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))
9190reseq2i 5393 . . . . . . 7 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
9289, 91syl6eq 2672 . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
93 fourierdlem72.v . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (𝑃𝑀))
94 fourierdlem72.m . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℕ)
95 fourierdlem72.p . . . . . . . . . . . . . . . . 17 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9695fourierdlem2 40326 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
9794, 96syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
9893, 97mpbid 222 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
9998simpld 475 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)))
100 elmapi 7879 . . . . . . . . . . . . 13 (𝑉 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
10199, 100syl 17 . . . . . . . . . . . 12 (𝜑𝑉:(0...𝑀)⟶ℝ)
102 fourierdlem72.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ (0..^𝑀))
103 elfzofz 12485 . . . . . . . . . . . . 13 (𝑈 ∈ (0..^𝑀) → 𝑈 ∈ (0...𝑀))
104102, 103syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ (0...𝑀))
105101, 104ffvelrnd 6360 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) ∈ ℝ)
106105rexrd 10089 . . . . . . . . . 10 (𝜑 → (𝑉𝑈) ∈ ℝ*)
107 fzofzp1 12565 . . . . . . . . . . . . 13 (𝑈 ∈ (0..^𝑀) → (𝑈 + 1) ∈ (0...𝑀))
108102, 107syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑈 + 1) ∈ (0...𝑀))
109101, 108ffvelrnd 6360 . . . . . . . . . . 11 (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ)
110109rexrd 10089 . . . . . . . . . 10 (𝜑 → (𝑉‘(𝑈 + 1)) ∈ ℝ*)
111 pire 24210 . . . . . . . . . . . . . . 15 π ∈ ℝ
112111a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℝ)
113112renegcld 10457 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℝ)
114 fourierdlem72.q . . . . . . . . . . . . 13 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
115113, 112, 5, 95, 94, 93, 104, 114fourierdlem13 40337 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝑈) = ((𝑉𝑈) − 𝑋) ∧ (𝑉𝑈) = (𝑋 + (𝑄𝑈))))
116115simprd 479 . . . . . . . . . . 11 (𝜑 → (𝑉𝑈) = (𝑋 + (𝑄𝑈)))
117115simpld 475 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝑈) = ((𝑉𝑈) − 𝑋))
118105, 5resubcld 10458 . . . . . . . . . . . . 13 (𝜑 → ((𝑉𝑈) − 𝑋) ∈ ℝ)
119117, 118eqeltrd 2701 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑈) ∈ ℝ)
120113, 112, 5, 95, 94, 93, 108, 114fourierdlem13 40337 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋) ∧ (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1)))))
121120simpld 475 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄‘(𝑈 + 1)) = ((𝑉‘(𝑈 + 1)) − 𝑋))
122109, 5resubcld 10458 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑉‘(𝑈 + 1)) − 𝑋) ∈ ℝ)
123121, 122eqeltrd 2701 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘(𝑈 + 1)) ∈ ℝ)
124 fourierdlem72.altb . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝐵)
125 fourierdlem72.abss . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
126119, 123, 78, 79, 124, 125fourierdlem10 40334 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝑈) ≤ 𝐴𝐵 ≤ (𝑄‘(𝑈 + 1))))
127126simpld 475 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑈) ≤ 𝐴)
128119, 78, 5, 127leadd2dd 10642 . . . . . . . . . . 11 (𝜑 → (𝑋 + (𝑄𝑈)) ≤ (𝑋 + 𝐴))
129116, 128eqbrtrd 4675 . . . . . . . . . 10 (𝜑 → (𝑉𝑈) ≤ (𝑋 + 𝐴))
130126simprd 479 . . . . . . . . . . . 12 (𝜑𝐵 ≤ (𝑄‘(𝑈 + 1)))
13179, 123, 5, 130leadd2dd 10642 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝐵) ≤ (𝑋 + (𝑄‘(𝑈 + 1))))
132120simprd 479 . . . . . . . . . . 11 (𝜑 → (𝑉‘(𝑈 + 1)) = (𝑋 + (𝑄‘(𝑈 + 1))))
133131, 132breqtrrd 4681 . . . . . . . . . 10 (𝜑 → (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))
134 ioossioo 12265 . . . . . . . . . 10 ((((𝑉𝑈) ∈ ℝ* ∧ (𝑉‘(𝑈 + 1)) ∈ ℝ*) ∧ ((𝑉𝑈) ≤ (𝑋 + 𝐴) ∧ (𝑋 + 𝐵) ≤ (𝑉‘(𝑈 + 1)))) → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
135106, 110, 129, 133, 134syl22anc 1327 . . . . . . . . 9 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
136135resabs1d 5428 . . . . . . . 8 (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
137136eqcomd 2628 . . . . . . 7 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
138102ancli 574 . . . . . . . . 9 (𝜑 → (𝜑𝑈 ∈ (0..^𝑀)))
139 eleq1 2689 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (𝑖 ∈ (0..^𝑀) ↔ 𝑈 ∈ (0..^𝑀)))
140139anbi2d 740 . . . . . . . . . . 11 (𝑖 = 𝑈 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑈 ∈ (0..^𝑀))))
141 fveq2 6191 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → (𝑉𝑖) = (𝑉𝑈))
142 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1))
143142fveq2d 6195 . . . . . . . . . . . . . 14 (𝑖 = 𝑈 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝑈 + 1)))
144141, 143oveq12d 6668 . . . . . . . . . . . . 13 (𝑖 = 𝑈 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))))
145144reseq2d 5396 . . . . . . . . . . . 12 (𝑖 = 𝑈 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))))
146144oveq1d 6665 . . . . . . . . . . . 12 (𝑖 = 𝑈 → (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) = (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))
147145, 146eleq12d 2695 . . . . . . . . . . 11 (𝑖 = 𝑈 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) ↔ ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))
148140, 147imbi12d 334 . . . . . . . . . 10 (𝑖 = 𝑈 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) ↔ ((𝜑𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))))
149 fourierdlem72.dvcn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
150148, 149vtoclg 3266 . . . . . . . . 9 (𝑈 ∈ (0..^𝑀) → ((𝜑𝑈 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ)))
151102, 138, 150sylc 65 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ))
152 rescncf 22700 . . . . . . . 8 (((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1))) → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ∈ (((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))–cn→ℝ) → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ)))
153135, 151, 152sylc 65 . . . . . . 7 (𝜑 → (((ℝ D 𝐹) ↾ ((𝑉𝑈)(,)(𝑉‘(𝑈 + 1)))) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
154137, 153eqeltrd 2701 . . . . . 6 (𝜑 → ((ℝ D 𝐹) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
15592, 154eqeltrd 2701 . . . . 5 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) ∈ (((𝑋 + 𝐴)(,)(𝑋 + 𝐵))–cn→ℝ))
1563, 5, 78, 79, 80, 155, 11, 26fourierdlem59 40382 . . . 4 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℝ))
15777, 156sseldd 3604 . . 3 (𝜑 → (ℝ D 𝐻) ∈ ((𝐴(,)𝐵)–cn→ℂ))
158 iooretop 22569 . . . . . 6 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
159158a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
16046, 40, 80, 159fourierdlem58 40381 . . . 4 (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℝ))
16177, 160sseldd 3604 . . 3 (𝜑 → (ℝ D 𝐾) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16256, 66, 71, 157, 161dvmulcncf 40140 . 2 (𝜑 → (ℝ D (𝐻𝑓 · 𝐾)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16354, 162eqeltrd 2701 1 (𝜑 → (ℝ D 𝑂) ∈ ((𝐴(,)𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  wss 3574  {cpr 4179   class class class wbr 4653  cmpt 4729  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  (,)cioo 12175  [,]cicc 12178  ...cfz 12326  ..^cfzo 12465  sincsin 14794  πcpi 14797  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  intcnt 20821  cnccncf 22679   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem103  40426  fourierdlem104  40427
  Copyright terms: Public domain W3C validator