MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvcxp Structured version   Visualization version   GIF version

Theorem abvcxp 25304
Description: Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvcxp.a 𝐴 = (AbsVal‘𝑅)
abvcxp.b 𝐵 = (Base‘𝑅)
abvcxp.f 𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))
Assertion
Ref Expression
abvcxp ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑅   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem abvcxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvcxp.a . . 3 𝐴 = (AbsVal‘𝑅)
21a1i 11 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐴 = (AbsVal‘𝑅))
3 abvcxp.b . . 3 𝐵 = (Base‘𝑅)
43a1i 11 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐵 = (Base‘𝑅))
5 eqidd 2623 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (+g𝑅) = (+g𝑅))
6 eqidd 2623 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (.r𝑅) = (.r𝑅))
7 eqidd 2623 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0g𝑅) = (0g𝑅))
81abvrcl 18821 . . 3 (𝐹𝐴𝑅 ∈ Ring)
98adantr 481 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑅 ∈ Ring)
101, 3abvcl 18824 . . . . 5 ((𝐹𝐴𝑥𝐵) → (𝐹𝑥) ∈ ℝ)
1110adantlr 751 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → (𝐹𝑥) ∈ ℝ)
121, 3abvge0 18825 . . . . 5 ((𝐹𝐴𝑥𝐵) → 0 ≤ (𝐹𝑥))
1312adantlr 751 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → 0 ≤ (𝐹𝑥))
14 simpr 477 . . . . . . 7 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ (0(,]1))
15 0xr 10086 . . . . . . . 8 0 ∈ ℝ*
16 1re 10039 . . . . . . . 8 1 ∈ ℝ
17 elioc2 12236 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1)))
1815, 16, 17mp2an 708 . . . . . . 7 (𝑆 ∈ (0(,]1) ↔ (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
1914, 18sylib 208 . . . . . 6 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
2019simp1d 1073 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℝ)
2120adantr 481 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → 𝑆 ∈ ℝ)
2211, 13, 21recxpcld 24469 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑥𝐵) → ((𝐹𝑥)↑𝑐𝑆) ∈ ℝ)
23 abvcxp.f . . 3 𝐺 = (𝑥𝐵 ↦ ((𝐹𝑥)↑𝑐𝑆))
2422, 23fmptd 6385 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺:𝐵⟶ℝ)
25 eqid 2622 . . . . . 6 (0g𝑅) = (0g𝑅)
263, 25ring0cl 18569 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
279, 26syl 17 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0g𝑅) ∈ 𝐵)
28 fveq2 6191 . . . . . 6 (𝑥 = (0g𝑅) → (𝐹𝑥) = (𝐹‘(0g𝑅)))
2928oveq1d 6665 . . . . 5 (𝑥 = (0g𝑅) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
30 ovex 6678 . . . . 5 ((𝐹‘(0g𝑅))↑𝑐𝑆) ∈ V
3129, 23, 30fvmpt 6282 . . . 4 ((0g𝑅) ∈ 𝐵 → (𝐺‘(0g𝑅)) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
3227, 31syl 17 . . 3 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐺‘(0g𝑅)) = ((𝐹‘(0g𝑅))↑𝑐𝑆))
331, 25abv0 18831 . . . . . 6 (𝐹𝐴 → (𝐹‘(0g𝑅)) = 0)
3433adantr 481 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐹‘(0g𝑅)) = 0)
3534oveq1d 6665 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → ((𝐹‘(0g𝑅))↑𝑐𝑆) = (0↑𝑐𝑆))
3620recnd 10068 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ∈ ℂ)
3719simp2d 1074 . . . . . 6 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 0 < 𝑆)
3837gt0ne0d 10592 . . . . 5 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝑆 ≠ 0)
3936, 380cxpd 24456 . . . 4 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (0↑𝑐𝑆) = 0)
4035, 39eqtrd 2656 . . 3 ((𝐹𝐴𝑆 ∈ (0(,]1)) → ((𝐹‘(0g𝑅))↑𝑐𝑆) = 0)
4132, 40eqtrd 2656 . 2 ((𝐹𝐴𝑆 ∈ (0(,]1)) → (𝐺‘(0g𝑅)) = 0)
42 simp1l 1085 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝐹𝐴)
43 simp2 1062 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝑦𝐵)
441, 3abvcl 18824 . . . . . . 7 ((𝐹𝐴𝑦𝐵) → (𝐹𝑦) ∈ ℝ)
4542, 43, 44syl2anc 693 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐹𝑦) ∈ ℝ)
461, 3, 25abvgt0 18828 . . . . . . 7 ((𝐹𝐴𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐹𝑦))
47463adant1r 1319 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐹𝑦))
4845, 47elrpd 11869 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐹𝑦) ∈ ℝ+)
49203ad2ant1 1082 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 𝑆 ∈ ℝ)
5048, 49rpcxpcld 24476 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → ((𝐹𝑦)↑𝑐𝑆) ∈ ℝ+)
5150rpgt0d 11875 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < ((𝐹𝑦)↑𝑐𝑆))
52 fveq2 6191 . . . . . 6 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5352oveq1d 6665 . . . . 5 (𝑥 = 𝑦 → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹𝑦)↑𝑐𝑆))
54 ovex 6678 . . . . 5 ((𝐹𝑦)↑𝑐𝑆) ∈ V
5553, 23, 54fvmpt 6282 . . . 4 (𝑦𝐵 → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
5643, 55syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
5751, 56breqtrrd 4681 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ 𝑦𝐵𝑦 ≠ (0g𝑅)) → 0 < (𝐺𝑦))
58 simp1l 1085 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝐹𝐴)
59 simp2l 1087 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑦𝐵)
60 simp3l 1089 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑧𝐵)
61 eqid 2622 . . . . . . 7 (.r𝑅) = (.r𝑅)
621, 3, 61abvmul 18829 . . . . . 6 ((𝐹𝐴𝑦𝐵𝑧𝐵) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
6358, 59, 60, 62syl3anc 1326 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
6463oveq1d 6665 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) = (((𝐹𝑦) · (𝐹𝑧))↑𝑐𝑆))
6558, 59, 44syl2anc 693 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹𝑦) ∈ ℝ)
661, 3abvge0 18825 . . . . . 6 ((𝐹𝐴𝑦𝐵) → 0 ≤ (𝐹𝑦))
6758, 59, 66syl2anc 693 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹𝑦))
681, 3abvcl 18824 . . . . . 6 ((𝐹𝐴𝑧𝐵) → (𝐹𝑧) ∈ ℝ)
6958, 60, 68syl2anc 693 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹𝑧) ∈ ℝ)
701, 3abvge0 18825 . . . . . 6 ((𝐹𝐴𝑧𝐵) → 0 ≤ (𝐹𝑧))
7158, 60, 70syl2anc 693 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹𝑧))
72363ad2ant1 1082 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℂ)
7365, 67, 69, 71, 72mulcxpd 24474 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) · (𝐹𝑧))↑𝑐𝑆) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
7464, 73eqtrd 2656 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
7593ad2ant1 1082 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑅 ∈ Ring)
763, 61ringcl 18561 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(.r𝑅)𝑧) ∈ 𝐵)
7775, 59, 60, 76syl3anc 1326 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑦(.r𝑅)𝑧) ∈ 𝐵)
78 fveq2 6191 . . . . . 6 (𝑥 = (𝑦(.r𝑅)𝑧) → (𝐹𝑥) = (𝐹‘(𝑦(.r𝑅)𝑧)))
7978oveq1d 6665 . . . . 5 (𝑥 = (𝑦(.r𝑅)𝑧) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
80 ovex 6678 . . . . 5 ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆) ∈ V
8179, 23, 80fvmpt 6282 . . . 4 ((𝑦(.r𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
8277, 81syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐹‘(𝑦(.r𝑅)𝑧))↑𝑐𝑆))
8359, 55syl 17 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺𝑦) = ((𝐹𝑦)↑𝑐𝑆))
84 fveq2 6191 . . . . . . 7 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
8584oveq1d 6665 . . . . . 6 (𝑥 = 𝑧 → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹𝑧)↑𝑐𝑆))
86 ovex 6678 . . . . . 6 ((𝐹𝑧)↑𝑐𝑆) ∈ V
8785, 23, 86fvmpt 6282 . . . . 5 (𝑧𝐵 → (𝐺𝑧) = ((𝐹𝑧)↑𝑐𝑆))
8860, 87syl 17 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺𝑧) = ((𝐹𝑧)↑𝑐𝑆))
8983, 88oveq12d 6668 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐺𝑦) · (𝐺𝑧)) = (((𝐹𝑦)↑𝑐𝑆) · ((𝐹𝑧)↑𝑐𝑆)))
9074, 82, 893eqtr4d 2666 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(.r𝑅)𝑧)) = ((𝐺𝑦) · (𝐺𝑧)))
91 ringgrp 18552 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
9275, 91syl 17 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑅 ∈ Grp)
93 eqid 2622 . . . . . . . 8 (+g𝑅) = (+g𝑅)
943, 93grpcl 17430 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
9592, 59, 60, 94syl3anc 1326 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
961, 3abvcl 18824 . . . . . 6 ((𝐹𝐴 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → (𝐹‘(𝑦(+g𝑅)𝑧)) ∈ ℝ)
9758, 95, 96syl2anc 693 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(+g𝑅)𝑧)) ∈ ℝ)
981, 3abvge0 18825 . . . . . 6 ((𝐹𝐴 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → 0 ≤ (𝐹‘(𝑦(+g𝑅)𝑧)))
9958, 95, 98syl2anc 693 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ (𝐹‘(𝑦(+g𝑅)𝑧)))
100193ad2ant1 1082 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝑆 ∈ ℝ ∧ 0 < 𝑆𝑆 ≤ 1))
101100simp1d 1073 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℝ)
10297, 99, 101recxpcld 24469 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ∈ ℝ)
10365, 69readdcld 10069 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑦) + (𝐹𝑧)) ∈ ℝ)
10465, 69, 67, 71addge0d 10603 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 ≤ ((𝐹𝑦) + (𝐹𝑧)))
105103, 104, 101recxpcld 24469 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆) ∈ ℝ)
10665, 67, 101recxpcld 24469 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑦)↑𝑐𝑆) ∈ ℝ)
10769, 71, 101recxpcld 24469 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹𝑧)↑𝑐𝑆) ∈ ℝ)
108106, 107readdcld 10069 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)) ∈ ℝ)
1091, 3, 93abvtri 18830 . . . . . 6 ((𝐹𝐴𝑦𝐵𝑧𝐵) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
11058, 59, 60, 109syl3anc 1326 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
111100simp2d 1074 . . . . . . 7 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 0 < 𝑆)
112101, 111elrpd 11869 . . . . . 6 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ∈ ℝ+)
11397, 99, 103, 104, 112cxple2d 24473 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)) ↔ ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆)))
114110, 113mpbid 222 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆))
115100simp3d 1075 . . . . 5 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → 𝑆 ≤ 1)
11665, 67, 69, 71, 112, 115cxpaddle 24493 . . . 4 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (((𝐹𝑦) + (𝐹𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
117102, 105, 108, 114, 116letrd 10194 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ≤ (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
118 fveq2 6191 . . . . . 6 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝐹𝑥) = (𝐹‘(𝑦(+g𝑅)𝑧)))
119118oveq1d 6665 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → ((𝐹𝑥)↑𝑐𝑆) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
120 ovex 6678 . . . . 5 ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆) ∈ V
121119, 23, 120fvmpt 6282 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → (𝐺‘(𝑦(+g𝑅)𝑧)) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
12295, 121syl 17 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(+g𝑅)𝑧)) = ((𝐹‘(𝑦(+g𝑅)𝑧))↑𝑐𝑆))
12383, 88oveq12d 6668 . . 3 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → ((𝐺𝑦) + (𝐺𝑧)) = (((𝐹𝑦)↑𝑐𝑆) + ((𝐹𝑧)↑𝑐𝑆)))
124117, 122, 1233brtr4d 4685 . 2 (((𝐹𝐴𝑆 ∈ (0(,]1)) ∧ (𝑦𝐵𝑦 ≠ (0g𝑅)) ∧ (𝑧𝐵𝑧 ≠ (0g𝑅))) → (𝐺‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐺𝑦) + (𝐺𝑧)))
1252, 4, 5, 6, 7, 9, 24, 41, 57, 90, 124isabvd 18820 1 ((𝐹𝐴𝑆 ∈ (0(,]1)) → 𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  (,]cioc 12176  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100  Grpcgrp 17422  Ringcrg 18547  AbsValcabv 18816  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ring 18549  df-abv 18817  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  ostth2  25326  ostth  25328
  Copyright terms: Public domain W3C validator