MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegconlem10 Structured version   Visualization version   Unicode version

Theorem axsegconlem10 25806
Description: Lemma for axsegcon 25807. Show that the scaling constant from axsegconlem7 25803 produces the betweenness condition for  A,  B and  F. (Contributed by Scott Fenton, 21-Sep-2013.)
Hypotheses
Ref Expression
axsegconlem2.1  |-  S  = 
sum_ p  e.  (
1 ... N ) ( ( ( A `  p )  -  ( B `  p )
) ^ 2 )
axsegconlem7.2  |-  T  = 
sum_ p  e.  (
1 ... N ) ( ( ( C `  p )  -  ( D `  p )
) ^ 2 )
axsegconlem8.3  |-  F  =  ( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  k
) )  -  (
( sqr `  T
)  x.  ( A `
 k ) ) )  /  ( sqr `  S ) ) )
Assertion
Ref Expression
axsegconlem10  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  S )  /  (
( sqr `  S
)  +  ( sqr `  T ) ) )  x.  ( F `  i ) ) ) )
Distinct variable groups:    A, p    B, p    C, p    D, p    N, p    A, i, k    B, i, k    C, i, k    D, i, k    i, N, k    S, i, k    T, i, k    i, p
Allowed substitution hints:    S( p)    T( p)    F( i, k, p)

Proof of Theorem axsegconlem10
StepHypRef Expression
1 axsegconlem7.2 . . . . . . . 8  |-  T  = 
sum_ p  e.  (
1 ... N ) ( ( ( C `  p )  -  ( D `  p )
) ^ 2 )
21axsegconlem4 25800 . . . . . . 7  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( sqr `  T
)  e.  RR )
32ad2antlr 763 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  T )  e.  RR )
4 simpl1 1064 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
5 fveere 25781 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  RR )
64, 5sylan 488 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  RR )
73, 6remulcld 10070 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( A `
 i ) )  e.  RR )
87recnd 10068 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  x.  ( A `
 i ) )  e.  CC )
9 axsegconlem2.1 . . . . . . . . 9  |-  S  = 
sum_ p  e.  (
1 ... N ) ( ( ( A `  p )  -  ( B `  p )
) ^ 2 )
109axsegconlem4 25800 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( sqr `  S
)  e.  RR )
11103adant3 1081 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  ( sqr `  S )  e.  RR )
1211ad2antrr 762 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  S )  e.  RR )
13 axsegconlem8.3 . . . . . . . 8  |-  F  =  ( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  k
) )  -  (
( sqr `  T
)  x.  ( A `
 k ) ) )  /  ( sqr `  S ) ) )
149, 1, 13axsegconlem8 25804 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
15 fveere 25781 . . . . . . 7  |-  ( ( F  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( F `  i )  e.  RR )
1614, 15sylan 488 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( F `  i )  e.  RR )
1712, 16remulcld 10070 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  x.  ( F `
 i ) )  e.  RR )
1817recnd 10068 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  x.  ( F `
 i ) )  e.  CC )
19 readdcl 10019 . . . . . . 7  |-  ( ( ( sqr `  S
)  e.  RR  /\  ( sqr `  T )  e.  RR )  -> 
( ( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
2011, 2, 19syl2an 494 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
2120adantr 481 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  e.  RR )
2221recnd 10068 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  e.  CC )
23 0red 10041 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  0  e.  RR )
2411adantr 481 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( sqr `  S )  e.  RR )
259axsegconlem6 25802 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  0  <  ( sqr `  S
) )
2625adantr 481 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  0  <  ( sqr `  S
) )
271axsegconlem5 25801 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
0  <_  ( sqr `  T ) )
2827adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  0  <_  ( sqr `  T
) )
29 addge01 10538 . . . . . . . . 9  |-  ( ( ( sqr `  S
)  e.  RR  /\  ( sqr `  T )  e.  RR )  -> 
( 0  <_  ( sqr `  T )  <->  ( sqr `  S )  <_  (
( sqr `  S
)  +  ( sqr `  T ) ) ) )
3011, 2, 29syl2an 494 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
0  <_  ( sqr `  T )  <->  ( sqr `  S )  <_  (
( sqr `  S
)  +  ( sqr `  T ) ) ) )
3128, 30mpbid 222 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( sqr `  S )  <_ 
( ( sqr `  S
)  +  ( sqr `  T ) ) )
3223, 24, 20, 26, 31ltletrd 10197 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  0  <  ( ( sqr `  S
)  +  ( sqr `  T ) ) )
3332gt0ne0d 10592 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  =/=  0 )
3433adantr 481 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  +  ( sqr `  T ) )  =/=  0 )
358, 18, 22, 34divdird 10839 . . 3  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  T )  x.  ( A `  i )
)  +  ( ( sqr `  S )  x.  ( F `  i ) ) )  /  ( ( sqr `  S )  +  ( sqr `  T ) ) )  =  ( ( ( ( sqr `  T )  x.  ( A `  i )
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  +  ( ( ( sqr `  S )  x.  ( F `  i )
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) ) ) )
36 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  i  ->  ( B `  k )  =  ( B `  i ) )
3736oveq2d 6666 . . . . . . . . . . . 12  |-  ( k  =  i  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  k
) )  =  ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) ) )
38 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  i  ->  ( A `  k )  =  ( A `  i ) )
3938oveq2d 6666 . . . . . . . . . . . 12  |-  ( k  =  i  ->  (
( sqr `  T
)  x.  ( A `
 k ) )  =  ( ( sqr `  T )  x.  ( A `  i )
) )
4037, 39oveq12d 6668 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 k ) )  -  ( ( sqr `  T )  x.  ( A `  k )
) )  =  ( ( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) ) )
4140oveq1d 6665 . . . . . . . . . 10  |-  ( k  =  i  ->  (
( ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  k )
)  -  ( ( sqr `  T )  x.  ( A `  k ) ) )  /  ( sqr `  S
) )  =  ( ( ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
)  -  ( ( sqr `  T )  x.  ( A `  i ) ) )  /  ( sqr `  S
) ) )
42 ovex 6678 . . . . . . . . . 10  |-  ( ( ( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  /  ( sqr `  S ) )  e.  _V
4341, 13, 42fvmpt 6282 . . . . . . . . 9  |-  ( i  e.  ( 1 ... N )  ->  ( F `  i )  =  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) )
4443adantl 482 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( F `  i )  =  ( ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) )  /  ( sqr `  S ) ) )
4544oveq2d 6666 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  x.  ( F `
 i ) )  =  ( ( sqr `  S )  x.  (
( ( ( ( sqr `  S )  +  ( sqr `  T
) )  x.  ( B `  i )
)  -  ( ( sqr `  T )  x.  ( A `  i ) ) )  /  ( sqr `  S
) ) ) )
46 simpl2 1065 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
47 fveere 25781 . . . . . . . . . . . 12  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  RR )
4846, 47sylan 488 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  RR )
4921, 48remulcld 10070 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  e.  RR )
5049, 7resubcld 10458 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  e.  RR )
5150recnd 10068 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  e.  CC )
5212recnd 10068 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  S )  e.  CC )
5325gt0ne0d 10592 . . . . . . . . 9  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  ( sqr `  S )  =/=  0 )
5453ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  S )  =/=  0 )
5551, 52, 54divcan2d 10803 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  x.  ( ( ( ( ( sqr `  S )  +  ( sqr `  T ) )  x.  ( B `
 i ) )  -  ( ( sqr `  T )  x.  ( A `  i )
) )  /  ( sqr `  S ) ) )  =  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )
5645, 55eqtrd 2656 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  S
)  x.  ( F `
 i ) )  =  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )
5756oveq2d 6666 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( A `
 i ) )  +  ( ( sqr `  S )  x.  ( F `  i )
) )  =  ( ( ( sqr `  T
)  x.  ( A `
 i ) )  +  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) ) )
5849recnd 10068 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  e.  CC )
598, 58pncan3d 10395 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( A `
 i ) )  +  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) )  -  (
( sqr `  T
)  x.  ( A `
 i ) ) ) )  =  ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) ) )
6057, 59eqtrd 2656 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( A `
 i ) )  +  ( ( sqr `  S )  x.  ( F `  i )
) )  =  ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) ) )
617, 17readdcld 10069 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( A `
 i ) )  +  ( ( sqr `  S )  x.  ( F `  i )
) )  e.  RR )
6261recnd 10068 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( A `
 i ) )  +  ( ( sqr `  S )  x.  ( F `  i )
) )  e.  CC )
6348recnd 10068 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  CC )
6462, 63, 22, 34divmul2d 10834 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( ( sqr `  T )  x.  ( A `  i ) )  +  ( ( sqr `  S
)  x.  ( F `
 i ) ) )  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  =  ( B `  i
)  <->  ( ( ( sqr `  T )  x.  ( A `  i ) )  +  ( ( sqr `  S
)  x.  ( F `
 i ) ) )  =  ( ( ( sqr `  S
)  +  ( sqr `  T ) )  x.  ( B `  i
) ) ) )
6560, 64mpbird 247 . . 3  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  T )  x.  ( A `  i )
)  +  ( ( sqr `  S )  x.  ( F `  i ) ) )  /  ( ( sqr `  S )  +  ( sqr `  T ) ) )  =  ( B `  i ) )
662recnd 10068 . . . . . . 7  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( sqr `  T
)  e.  CC )
6766ad2antlr 763 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( sqr `  T )  e.  CC )
686recnd 10068 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  CC )
6967, 68, 22, 34div23d 10838 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( A `
 i ) )  /  ( ( sqr `  S )  +  ( sqr `  T ) ) )  =  ( ( ( sqr `  T
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  x.  ( A `  i
) ) )
7022, 52, 22, 34divsubdird 10840 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  -  ( sqr `  S ) )  / 
( ( sqr `  S
)  +  ( sqr `  T ) ) )  =  ( ( ( ( sqr `  S
)  +  ( sqr `  T ) )  / 
( ( sqr `  S
)  +  ( sqr `  T ) ) )  -  ( ( sqr `  S )  /  (
( sqr `  S
)  +  ( sqr `  T ) ) ) ) )
7111recnd 10068 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B )  ->  ( sqr `  S )  e.  CC )
72 pncan2 10288 . . . . . . . . . 10  |-  ( ( ( sqr `  S
)  e.  CC  /\  ( sqr `  T )  e.  CC )  -> 
( ( ( sqr `  S )  +  ( sqr `  T ) )  -  ( sqr `  S ) )  =  ( sqr `  T
) )
7371, 66, 72syl2an 494 . . . . . . . . 9  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  -  ( sqr `  S ) )  =  ( sqr `  T ) )
7473adantr 481 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  -  ( sqr `  S ) )  =  ( sqr `  T ) )
7574oveq1d 6665 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  -  ( sqr `  S ) )  / 
( ( sqr `  S
)  +  ( sqr `  T ) ) )  =  ( ( sqr `  T )  /  (
( sqr `  S
)  +  ( sqr `  T ) ) ) )
7622, 34dividd 10799 . . . . . . . 8  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  +  ( sqr `  T ) )  / 
( ( sqr `  S
)  +  ( sqr `  T ) ) )  =  1 )
7776oveq1d 6665 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  S )  +  ( sqr `  T ) )  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  -  ( ( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) ) )  =  ( 1  -  ( ( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) ) ) )
7870, 75, 773eqtr3d 2664 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( sqr `  T
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  =  ( 1  -  (
( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) ) ) )
7978oveq1d 6665 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  x.  ( A `  i
) )  =  ( ( 1  -  (
( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) ) )  x.  ( A `  i ) ) )
8069, 79eqtrd 2656 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  T
)  x.  ( A `
 i ) )  /  ( ( sqr `  S )  +  ( sqr `  T ) ) )  =  ( ( 1  -  (
( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) ) )  x.  ( A `  i ) ) )
8116recnd 10068 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( F `  i )  e.  CC )
8252, 81, 22, 34div23d 10838 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( sqr `  S
)  x.  ( F `
 i ) )  /  ( ( sqr `  S )  +  ( sqr `  T ) ) )  =  ( ( ( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  x.  ( F `  i
) ) )
8380, 82oveq12d 6668 . . 3  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( sqr `  T )  x.  ( A `  i )
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  +  ( ( ( sqr `  S )  x.  ( F `  i )
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) ) )  =  ( ( ( 1  -  ( ( sqr `  S )  /  ( ( sqr `  S )  +  ( sqr `  T ) ) ) )  x.  ( A `  i
) )  +  ( ( ( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  x.  ( F `  i
) ) ) )
8435, 65, 833eqtr3d 2664 . 2  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  S )  /  ( ( sqr `  S )  +  ( sqr `  T ) ) ) )  x.  ( A `  i
) )  +  ( ( ( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) )  x.  ( F `  i
) ) ) )
8584ralrimiva 2966 1  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  S
)  /  ( ( sqr `  S )  +  ( sqr `  T
) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  S )  /  (
( sqr `  S
)  +  ( sqr `  T ) ) )  x.  ( F `  i ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   ...cfz 12326   ^cexp 12860   sqrcsqrt 13973   sum_csu 14416   EEcee 25768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771
This theorem is referenced by:  axsegcon  25807
  Copyright terms: Public domain W3C validator