MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomrisefac Structured version   Visualization version   Unicode version

Theorem binomrisefac 14773
Description: A version of the binomial theorem using rising factorials instead of exponentials. (Contributed by Scott Fenton, 16-Mar-2018.)
Assertion
Ref Expression
binomrisefac  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  +  B
) RiseFac  N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A RiseFac  ( N  -  k ) )  x.  ( B RiseFac  k )
) ) )
Distinct variable groups:    A, k    B, k    k, N

Proof of Theorem binomrisefac
StepHypRef Expression
1 negdi 10338 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  +  B )  =  (
-u A  +  -u B ) )
213adant3 1081 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  -u ( A  +  B )  =  ( -u A  +  -u B ) )
32oveq1d 6665 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  ( -u ( A  +  B
) FallFac  N )  =  ( ( -u A  +  -u B ) FallFac  N ) )
4 negcl 10281 . . . . . 6  |-  ( A  e.  CC  ->  -u A  e.  CC )
5 negcl 10281 . . . . . 6  |-  ( B  e.  CC  ->  -u B  e.  CC )
6 id 22 . . . . . 6  |-  ( N  e.  NN0  ->  N  e. 
NN0 )
7 binomfallfac 14772 . . . . . 6  |-  ( (
-u A  e.  CC  /\  -u B  e.  CC  /\  N  e.  NN0 )  ->  ( ( -u A  +  -u B ) FallFac  N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) ) )
84, 5, 6, 7syl3an 1368 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( -u A  +  -u B ) FallFac  N )  = 
sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  (
( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) ) )
93, 8eqtrd 2656 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  ( -u ( A  +  B
) FallFac  N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( (
-u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k
) ) ) )
109oveq2d 6666 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( -u 1 ^ N
)  x.  ( -u ( A  +  B
) FallFac  N ) )  =  ( ( -u 1 ^ N )  x.  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( (
-u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k
) ) ) ) )
11 fzfid 12772 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
0 ... N )  e. 
Fin )
12 neg1cn 11124 . . . . . 6  |-  -u 1  e.  CC
13 expcl 12878 . . . . . 6  |-  ( (
-u 1  e.  CC  /\  N  e.  NN0 )  ->  ( -u 1 ^ N )  e.  CC )
1412, 13mpan 706 . . . . 5  |-  ( N  e.  NN0  ->  ( -u
1 ^ N )  e.  CC )
15143ad2ant3 1084 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  ( -u 1 ^ N )  e.  CC )
16 simp3 1063 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  N  e.  NN0 )
17 elfzelz 12342 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
18 bccl 13109 . . . . . . 7  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  _C  k
)  e.  NN0 )
1916, 17, 18syl2an 494 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  e.  NN0 )
2019nn0cnd 11353 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( N  _C  k )  e.  CC )
21 simpl1 1064 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  A  e.  CC )
2221negcld 10379 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  -u A  e.  CC )
2316nn0zd 11480 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ZZ )
24 zsubcl 11419 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( N  -  k
)  e.  ZZ )
2523, 17, 24syl2an 494 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( N  -  k )  e.  ZZ )
26 elfzle2 12345 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  k  <_  N )
2726adantl 482 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  k  <_  N
)
28 simpl3 1066 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  N  e.  NN0 )
2928nn0red 11352 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  N  e.  RR )
30 elfznn0 12433 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
3130adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  k  e.  NN0 )
3231nn0red 11352 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  k  e.  RR )
3329, 32subge0d 10617 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( 0  <_ 
( N  -  k
)  <->  k  <_  N
) )
3427, 33mpbird 247 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  0  <_  ( N  -  k )
)
35 elnn0z 11390 . . . . . . . 8  |-  ( ( N  -  k )  e.  NN0  <->  ( ( N  -  k )  e.  ZZ  /\  0  <_ 
( N  -  k
) ) )
3625, 34, 35sylanbrc 698 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( N  -  k )  e.  NN0 )
37 fallfaccl 14747 . . . . . . 7  |-  ( (
-u A  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( -u A FallFac  ( N  -  k )
)  e.  CC )
3822, 36, 37syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( -u A FallFac  ( N  -  k ) )  e.  CC )
39 simp2 1062 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  B  e.  CC )
4039negcld 10379 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  -u B  e.  CC )
41 fallfaccl 14747 . . . . . . 7  |-  ( (
-u B  e.  CC  /\  k  e.  NN0 )  ->  ( -u B FallFac  k
)  e.  CC )
4240, 30, 41syl2an 494 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( -u B FallFac  k )  e.  CC )
4338, 42mulcld 10060 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( -u A FallFac  ( N  -  k
) )  x.  ( -u B FallFac  k ) )  e.  CC )
4420, 43mulcld 10060 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  _C  k )  x.  ( ( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) )  e.  CC )
4511, 15, 44fsummulc2 14516 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( -u 1 ^ N
)  x.  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) ) )  =  sum_ k  e.  ( 0 ... N
) ( ( -u
1 ^ N )  x.  ( ( N  _C  k )  x.  ( ( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) ) ) )
4610, 45eqtrd 2656 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( -u 1 ^ N
)  x.  ( -u ( A  +  B
) FallFac  N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ N )  x.  (
( N  _C  k
)  x.  ( (
-u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k
) ) ) ) )
47 addcl 10018 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
48 risefallfac 14755 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  +  B ) RiseFac  N )  =  ( ( -u 1 ^ N )  x.  ( -u ( A  +  B
) FallFac  N ) ) )
4947, 48stoic3 1701 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  +  B
) RiseFac  N )  =  ( ( -u 1 ^ N )  x.  ( -u ( A  +  B
) FallFac  N ) ) )
50 risefallfac 14755 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( A RiseFac  ( N  -  k ) )  =  ( ( -u
1 ^ ( N  -  k ) )  x.  ( -u A FallFac  ( N  -  k ) ) ) )
5121, 36, 50syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( A RiseFac  ( N  -  k )
)  =  ( (
-u 1 ^ ( N  -  k )
)  x.  ( -u A FallFac  ( N  -  k
) ) ) )
52 simpl2 1065 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  B  e.  CC )
53 risefallfac 14755 . . . . . . . 8  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B RiseFac  k )  =  ( ( -u
1 ^ k )  x.  ( -u B FallFac  k ) ) )
5452, 31, 53syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( B RiseFac  k
)  =  ( (
-u 1 ^ k
)  x.  ( -u B FallFac  k ) ) )
5551, 54oveq12d 6668 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( A RiseFac 
( N  -  k
) )  x.  ( B RiseFac  k ) )  =  ( ( ( -u
1 ^ ( N  -  k ) )  x.  ( -u A FallFac  ( N  -  k ) ) )  x.  (
( -u 1 ^ k
)  x.  ( -u B FallFac  k ) ) ) )
56 expcl 12878 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  ( N  -  k
)  e.  NN0 )  ->  ( -u 1 ^ ( N  -  k
) )  e.  CC )
5712, 36, 56sylancr 695 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( -u 1 ^ ( N  -  k ) )  e.  CC )
58 expcl 12878 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  k  e.  NN0 )  ->  ( -u 1 ^ k )  e.  CC )
5912, 30, 58sylancr 695 . . . . . . . 8  |-  ( k  e.  ( 0 ... N )  ->  ( -u 1 ^ k )  e.  CC )
6059adantl 482 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( -u 1 ^ k )  e.  CC )
6157, 38, 60, 42mul4d 10248 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( (
-u 1 ^ ( N  -  k )
)  x.  ( -u A FallFac  ( N  -  k
) ) )  x.  ( ( -u 1 ^ k )  x.  ( -u B FallFac  k
) ) )  =  ( ( ( -u
1 ^ ( N  -  k ) )  x.  ( -u 1 ^ k ) )  x.  ( ( -u A FallFac  ( N  -  k
) )  x.  ( -u B FallFac  k ) ) ) )
6212a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  -u 1  e.  CC )
6362, 31, 36expaddd 13010 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( -u 1 ^ ( ( N  -  k )  +  k ) )  =  ( ( -u 1 ^ ( N  -  k ) )  x.  ( -u 1 ^ k ) ) )
6416nn0cnd 11353 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  N  e.  CC )
6530nn0cnd 11353 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... N )  ->  k  e.  CC )
66 npcan 10290 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  k  e.  CC )  ->  ( ( N  -  k )  +  k )  =  N )
6764, 65, 66syl2an 494 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  -  k )  +  k )  =  N )
6867oveq2d 6666 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( -u 1 ^ ( ( N  -  k )  +  k ) )  =  ( -u 1 ^ N ) )
6963, 68eqtr3d 2658 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( -u
1 ^ ( N  -  k ) )  x.  ( -u 1 ^ k ) )  =  ( -u 1 ^ N ) )
7069oveq1d 6665 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( (
-u 1 ^ ( N  -  k )
)  x.  ( -u
1 ^ k ) )  x.  ( (
-u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k
) ) )  =  ( ( -u 1 ^ N )  x.  (
( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) ) )
7155, 61, 703eqtrd 2660 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( A RiseFac 
( N  -  k
) )  x.  ( B RiseFac  k ) )  =  ( ( -u 1 ^ N )  x.  (
( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) ) )
7271oveq2d 6666 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  _C  k )  x.  ( ( A RiseFac  ( N  -  k )
)  x.  ( B RiseFac 
k ) ) )  =  ( ( N  _C  k )  x.  ( ( -u 1 ^ N )  x.  (
( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) ) ) )
7315adantr 481 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( -u 1 ^ N )  e.  CC )
7420, 73, 43mul12d 10245 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  _C  k )  x.  ( ( -u 1 ^ N )  x.  (
( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) ) )  =  ( ( -u
1 ^ N )  x.  ( ( N  _C  k )  x.  ( ( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) ) ) )
7572, 74eqtrd 2656 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N ) )  ->  ( ( N  _C  k )  x.  ( ( A RiseFac  ( N  -  k )
)  x.  ( B RiseFac 
k ) ) )  =  ( ( -u
1 ^ N )  x.  ( ( N  _C  k )  x.  ( ( -u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k ) ) ) ) )
7675sumeq2dv 14433 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( ( A RiseFac  ( N  -  k )
)  x.  ( B RiseFac 
k ) ) )  =  sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ N )  x.  (
( N  _C  k
)  x.  ( (
-u A FallFac  ( N  -  k ) )  x.  ( -u B FallFac  k
) ) ) ) )
7746, 49, 763eqtr4d 2666 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  (
( A  +  B
) RiseFac  N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( ( A RiseFac  ( N  -  k ) )  x.  ( B RiseFac  k )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   -ucneg 10267   NN0cn0 11292   ZZcz 11377   ...cfz 12326   ^cexp 12860    _C cbc 13089   sum_csu 14416   FallFac cfallfac 14735   RiseFac crisefac 14736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-risefac 14737  df-fallfac 14738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator