MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfzolem Structured version   Visualization version   Unicode version

Theorem bitsfzolem 15156
Description: Lemma for bitsfzo 15157. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
bitsfzo.1  |-  ( ph  ->  N  e.  NN0 )
bitsfzo.2  |-  ( ph  ->  M  e.  NN0 )
bitsfzo.3  |-  ( ph  ->  (bits `  N )  C_  ( 0..^ M ) )
bitsfzo.4  |-  S  = inf ( { n  e. 
NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  <  )
Assertion
Ref Expression
bitsfzolem  |-  ( ph  ->  N  e.  ( 0..^ ( 2 ^ M
) ) )
Distinct variable group:    n, N
Allowed substitution hints:    ph( n)    S( n)    M( n)

Proof of Theorem bitsfzolem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 bitsfzo.1 . . 3  |-  ( ph  ->  N  e.  NN0 )
2 nn0uz 11722 . . 3  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2711 . 2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
4 2nn 11185 . . . . 5  |-  2  e.  NN
54a1i 11 . . . 4  |-  ( ph  ->  2  e.  NN )
6 bitsfzo.2 . . . 4  |-  ( ph  ->  M  e.  NN0 )
75, 6nnexpcld 13030 . . 3  |-  ( ph  ->  ( 2 ^ M
)  e.  NN )
87nnzd 11481 . 2  |-  ( ph  ->  ( 2 ^ M
)  e.  ZZ )
9 bitsfzo.3 . . . . . . . 8  |-  ( ph  ->  (bits `  N )  C_  ( 0..^ M ) )
109adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (bits `  N )  C_  (
0..^ M ) )
11 n2dvds1 15104 . . . . . . . . 9  |-  -.  2  ||  1
124a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  2  e.  NN )
13 ssrab2 3687 . . . . . . . . . . . . . . . . . . . . 21  |-  { n  e.  NN0  |  N  < 
( 2 ^ n
) }  C_  NN0
14 bitsfzo.4 . . . . . . . . . . . . . . . . . . . . . 22  |-  S  = inf ( { n  e. 
NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  <  )
1513, 2sseqtri 3637 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { n  e.  NN0  |  N  < 
( 2 ^ n
) }  C_  ( ZZ>=
`  0 )
16 nnssnn0 11295 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  NN  C_  NN0
171nn0red 11352 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  N  e.  RR )
18 2re 11090 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  2  e.  RR
1918a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  2  e.  RR )
20 1lt2 11194 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  1  <  2
2120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  1  <  2 )
22 expnbnd 12993 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  RR  /\  2  e.  RR  /\  1  <  2 )  ->  E. n  e.  NN  N  <  (
2 ^ n ) )
2317, 19, 21, 22syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  E. n  e.  NN  N  <  ( 2 ^ n ) )
24 ssrexv 3667 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( NN  C_  NN0  ->  ( E. n  e.  NN  N  <  ( 2 ^ n
)  ->  E. n  e.  NN0  N  <  (
2 ^ n ) ) )
2516, 23, 24mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  E. n  e.  NN0  N  <  ( 2 ^ n ) )
26 rabn0 3958 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( { n  e.  NN0  |  N  <  ( 2 ^ n ) }  =/=  (/)  <->  E. n  e.  NN0  N  <  ( 2 ^ n
) )
2725, 26sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  { n  e.  NN0  |  N  <  ( 2 ^ n ) }  =/=  (/) )
28 infssuzcl 11772 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } 
C_  ( ZZ>= `  0
)  /\  { n  e.  NN0  |  N  < 
( 2 ^ n
) }  =/=  (/) )  -> inf ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  <  )  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) } )
2915, 27, 28sylancr 695 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  -> inf ( { n  e. 
NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  <  )  e.  { n  e.  NN0  |  N  < 
( 2 ^ n
) } )
3014, 29syl5eqel 2705 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  S  e.  { n  e.  NN0  |  N  < 
( 2 ^ n
) } )
3113, 30sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  S  e.  NN0 )
3231nn0zd 11480 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  S  e.  ZZ )
3332adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  S  e.  ZZ )
34 0red 10041 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  0  e.  RR )
356nn0zd 11480 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  M  e.  ZZ )
3635adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  M  e.  ZZ )
3736zred 11482 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  M  e.  RR )
3833zred 11482 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  S  e.  RR )
396adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  M  e.  NN0 )
4039nn0ge0d 11354 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  0  <_  M )
4118a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  2  e.  RR )
4241, 39reexpcld 13025 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ M )  e.  RR )
4317adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  N  e.  RR )
445, 31nnexpcld 13030 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( 2 ^ S
)  e.  NN )
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ S )  e.  NN )
4645nnred 11035 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ S )  e.  RR )
47 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ M )  <_  N )
4830adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  S  e.  { n  e.  NN0  |  N  <  ( 2 ^ n ) } )
49 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  =  S  ->  (
2 ^ m )  =  ( 2 ^ S ) )
5049breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  =  S  ->  ( N  <  ( 2 ^ m )  <->  N  <  ( 2 ^ S ) ) )
51 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  m  ->  (
2 ^ n )  =  ( 2 ^ m ) )
5251breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  m  ->  ( N  <  ( 2 ^ n )  <->  N  <  ( 2 ^ m ) ) )
5352cbvrabv 3199 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  { n  e.  NN0  |  N  < 
( 2 ^ n
) }  =  {
m  e.  NN0  |  N  <  ( 2 ^ m ) }
5450, 53elrab2 3366 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( S  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) }  <->  ( S  e. 
NN0  /\  N  <  ( 2 ^ S ) ) )
5554simprbi 480 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) }  ->  N  <  ( 2 ^ S ) )
5648, 55syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  N  <  ( 2 ^ S
) )
5742, 43, 46, 47, 56lelttrd 10195 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ M )  <  ( 2 ^ S ) )
5820a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  1  <  2 )
5941, 36, 33, 58ltexp2d 13038 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( M  <  S  <->  ( 2 ^ M )  < 
( 2 ^ S
) ) )
6057, 59mpbird 247 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  M  <  S )
6134, 37, 38, 40, 60lelttrd 10195 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  0  <  S )
62 elnnz 11387 . . . . . . . . . . . . . . . . . 18  |-  ( S  e.  NN  <->  ( S  e.  ZZ  /\  0  < 
S ) )
6333, 61, 62sylanbrc 698 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  S  e.  NN )
64 nnm1nn0 11334 . . . . . . . . . . . . . . . . 17  |-  ( S  e.  NN  ->  ( S  -  1 )  e.  NN0 )
6563, 64syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  e.  NN0 )
6612, 65nnexpcld 13030 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ ( S  -  1 ) )  e.  NN )
6766nncnd 11036 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ ( S  -  1 ) )  e.  CC )
6867mulid2d 10058 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
1  x.  ( 2 ^ ( S  - 
1 ) ) )  =  ( 2 ^ ( S  -  1 ) ) )
6938ltm1d 10956 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  <  S )
7065nn0red 11352 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  e.  RR )
7170, 38ltnled 10184 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( S  -  1 )  <  S  <->  -.  S  <_  ( S  -  1 ) ) )
7269, 71mpbid 222 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  -.  S  <_  ( S  - 
1 ) )
73 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  ( S  - 
1 )  ->  (
2 ^ m )  =  ( 2 ^ ( S  -  1 ) ) )
7473breq2d 4665 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  ( S  - 
1 )  ->  ( N  <  ( 2 ^ m )  <->  N  <  ( 2 ^ ( S  -  1 ) ) ) )
7574, 53elrab2 3366 . . . . . . . . . . . . . . . . 17  |-  ( ( S  -  1 )  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) }  <->  ( ( S  -  1 )  e. 
NN0  /\  N  <  ( 2 ^ ( S  -  1 ) ) ) )
76 infssuzle 11771 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( { n  e.  NN0  |  N  <  ( 2 ^ n ) } 
C_  ( ZZ>= `  0
)  /\  ( S  -  1 )  e. 
{ n  e.  NN0  |  N  <  ( 2 ^ n ) } )  -> inf ( {
n  e.  NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  <  )  <_ 
( S  -  1 ) )
7715, 76mpan 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  -  1 )  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) }  -> inf ( {
n  e.  NN0  |  N  <  ( 2 ^ n ) } ,  RR ,  <  )  <_ 
( S  -  1 ) )
7814, 77syl5eqbr 4688 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  -  1 )  e.  { n  e. 
NN0  |  N  <  ( 2 ^ n ) }  ->  S  <_  ( S  -  1 ) )
7978a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( S  -  1 )  e.  { n  e.  NN0  |  N  < 
( 2 ^ n
) }  ->  S  <_  ( S  -  1 ) ) )
8075, 79syl5bir 233 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( ( S  - 
1 )  e.  NN0  /\  N  <  ( 2 ^ ( S  - 
1 ) ) )  ->  S  <_  ( S  -  1 ) ) )
8165, 80mpand 711 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( N  <  ( 2 ^ ( S  -  1 ) )  ->  S  <_  ( S  -  1 ) ) )
8272, 81mtod 189 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  -.  N  <  ( 2 ^ ( S  -  1 ) ) )
8366nnred 11035 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ ( S  -  1 ) )  e.  RR )
8483, 43lenltd 10183 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( 2 ^ ( S  -  1 ) )  <_  N  <->  -.  N  <  ( 2 ^ ( S  -  1 ) ) ) )
8582, 84mpbird 247 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ ( S  -  1 ) )  <_  N )
8668, 85eqbrtrd 4675 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
1  x.  ( 2 ^ ( S  - 
1 ) ) )  <_  N )
87 1red 10055 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  1  e.  RR )
88 2rp 11837 . . . . . . . . . . . . . . 15  |-  2  e.  RR+
8988a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  2  e.  RR+ )
90 1z 11407 . . . . . . . . . . . . . . . 16  |-  1  e.  ZZ
9190a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  1  e.  ZZ )
9233, 91zsubcld 11487 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  e.  ZZ )
9389, 92rpexpcld 13032 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ ( S  -  1 ) )  e.  RR+ )
9487, 43, 93lemuldivd 11921 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( 1  x.  (
2 ^ ( S  -  1 ) ) )  <_  N  <->  1  <_  ( N  /  ( 2 ^ ( S  - 
1 ) ) ) ) )
9586, 94mpbid 222 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  1  <_  ( N  /  (
2 ^ ( S  -  1 ) ) ) )
96 2cn 11091 . . . . . . . . . . . . . . 15  |-  2  e.  CC
97 expm1t 12888 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  S  e.  NN )  ->  ( 2 ^ S
)  =  ( ( 2 ^ ( S  -  1 ) )  x.  2 ) )
9896, 63, 97sylancr 695 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2 ^ S )  =  ( ( 2 ^ ( S  - 
1 ) )  x.  2 ) )
9956, 98breqtrd 4679 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  N  <  ( ( 2 ^ ( S  -  1 ) )  x.  2 ) )
10043, 41, 93ltdivmuld 11923 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( N  /  (
2 ^ ( S  -  1 ) ) )  <  2  <->  N  <  ( ( 2 ^ ( S  -  1 ) )  x.  2 ) ) )
10199, 100mpbird 247 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( N  /  ( 2 ^ ( S  -  1 ) ) )  <  2 )
102 df-2 11079 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
103101, 102syl6breq 4694 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( N  /  ( 2 ^ ( S  -  1 ) ) )  < 
( 1  +  1 ) )
10443, 93rerpdivcld 11903 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( N  /  ( 2 ^ ( S  -  1 ) ) )  e.  RR )
105 flbi 12617 . . . . . . . . . . . 12  |-  ( ( ( N  /  (
2 ^ ( S  -  1 ) ) )  e.  RR  /\  1  e.  ZZ )  ->  ( ( |_ `  ( N  /  (
2 ^ ( S  -  1 ) ) ) )  =  1  <-> 
( 1  <_  ( N  /  ( 2 ^ ( S  -  1 ) ) )  /\  ( N  /  (
2 ^ ( S  -  1 ) ) )  <  ( 1  +  1 ) ) ) )
106104, 90, 105sylancl 694 . . . . . . . . . . 11  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( |_ `  ( N  /  ( 2 ^ ( S  -  1 ) ) ) )  =  1  <->  ( 1  <_  ( N  / 
( 2 ^ ( S  -  1 ) ) )  /\  ( N  /  ( 2 ^ ( S  -  1 ) ) )  < 
( 1  +  1 ) ) ) )
10795, 103, 106mpbir2and 957 . . . . . . . . . 10  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( |_ `  ( N  / 
( 2 ^ ( S  -  1 ) ) ) )  =  1 )
108107breq2d 4665 . . . . . . . . 9  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
2  ||  ( |_ `  ( N  /  (
2 ^ ( S  -  1 ) ) ) )  <->  2  ||  1 ) )
10911, 108mtbiri 317 . . . . . . . 8  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  -.  2  ||  ( |_ `  ( N  /  (
2 ^ ( S  -  1 ) ) ) ) )
1101nn0zd 11480 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
111110adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  N  e.  ZZ )
112 bitsval2 15147 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( S  -  1
)  e.  NN0 )  ->  ( ( S  - 
1 )  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ ( S  -  1 ) ) ) ) ) )
113111, 65, 112syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  (
( S  -  1 )  e.  (bits `  N )  <->  -.  2  ||  ( |_ `  ( N  /  ( 2 ^ ( S  -  1 ) ) ) ) ) )
114109, 113mpbird 247 . . . . . . 7  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  e.  (bits `  N
) )
11510, 114sseldd 3604 . . . . . 6  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  e.  ( 0..^ M ) )
116 elfzolt2 12479 . . . . . 6  |-  ( ( S  -  1 )  e.  ( 0..^ M )  ->  ( S  -  1 )  < 
M )
117115, 116syl 17 . . . . 5  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  -  1 )  <  M )
118 zlem1lt 11429 . . . . . 6  |-  ( ( S  e.  ZZ  /\  M  e.  ZZ )  ->  ( S  <_  M  <->  ( S  -  1 )  <  M ) )
11933, 36, 118syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( S  <_  M  <->  ( S  -  1 )  < 
M ) )
120117, 119mpbird 247 . . . 4  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  S  <_  M )
12137, 38ltnled 10184 . . . . 5  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  ( M  <  S  <->  -.  S  <_  M ) )
12260, 121mpbid 222 . . . 4  |-  ( (
ph  /\  ( 2 ^ M )  <_  N )  ->  -.  S  <_  M )
123120, 122pm2.65da 600 . . 3  |-  ( ph  ->  -.  ( 2 ^ M )  <_  N
)
1247nnred 11035 . . . 4  |-  ( ph  ->  ( 2 ^ M
)  e.  RR )
12517, 124ltnled 10184 . . 3  |-  ( ph  ->  ( N  <  (
2 ^ M )  <->  -.  ( 2 ^ M
)  <_  N )
)
126123, 125mpbird 247 . 2  |-  ( ph  ->  N  <  ( 2 ^ M ) )
127 elfzo2 12473 . 2  |-  ( N  e.  ( 0..^ ( 2 ^ M ) )  <->  ( N  e.  ( ZZ>= `  0 )  /\  ( 2 ^ M
)  e.  ZZ  /\  N  <  ( 2 ^ M ) ) )
1283, 8, 126, 127syl3anbrc 1246 1  |-  ( ph  ->  N  e.  ( 0..^ ( 2 ^ M
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832  ..^cfzo 12465   |_cfl 12591   ^cexp 12860    || cdvds 14983  bitscbits 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-dvds 14984  df-bits 15144
This theorem is referenced by:  bitsfzo  15157
  Copyright terms: Public domain W3C validator