Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooicc Structured version   Visualization version   Unicode version

Theorem cncfiooicc 40107
Description: A continuous function  F on an open interval  ( A (,) B ) can be extended to a continuous function  G on the corresponding closed interval, if it has a finite right limit  R in  A and a finite left limit  L in  B.  F can be complex valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooicc.x  |-  F/ x ph
cncfiooicc.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
cncfiooicc.a  |-  ( ph  ->  A  e.  RR )
cncfiooicc.b  |-  ( ph  ->  B  e.  RR )
cncfiooicc.f  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
cncfiooicc.l  |-  ( ph  ->  L  e.  ( F lim
CC  B ) )
cncfiooicc.r  |-  ( ph  ->  R  e.  ( F lim
CC  A ) )
Assertion
Ref Expression
cncfiooicc  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
Distinct variable groups:    x, A    x, B    x, F    x, L    x, R    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem cncfiooicc
StepHypRef Expression
1 nfv 1843 . . 3  |-  F/ x
( ph  /\  A  < 
B )
2 cncfiooicc.g . . 3  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
3 cncfiooicc.a . . . 4  |-  ( ph  ->  A  e.  RR )
43adantr 481 . . 3  |-  ( (
ph  /\  A  <  B )  ->  A  e.  RR )
5 cncfiooicc.b . . . 4  |-  ( ph  ->  B  e.  RR )
65adantr 481 . . 3  |-  ( (
ph  /\  A  <  B )  ->  B  e.  RR )
7 simpr 477 . . 3  |-  ( (
ph  /\  A  <  B )  ->  A  <  B )
8 cncfiooicc.f . . . 4  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
98adantr 481 . . 3  |-  ( (
ph  /\  A  <  B )  ->  F  e.  ( ( A (,) B ) -cn-> CC ) )
10 cncfiooicc.l . . . 4  |-  ( ph  ->  L  e.  ( F lim
CC  B ) )
1110adantr 481 . . 3  |-  ( (
ph  /\  A  <  B )  ->  L  e.  ( F lim CC  B ) )
12 cncfiooicc.r . . . 4  |-  ( ph  ->  R  e.  ( F lim
CC  A ) )
1312adantr 481 . . 3  |-  ( (
ph  /\  A  <  B )  ->  R  e.  ( F lim CC  A ) )
141, 2, 4, 6, 7, 9, 11, 13cncfiooicclem1 40106 . 2  |-  ( (
ph  /\  A  <  B )  ->  G  e.  ( ( A [,] B ) -cn-> CC ) )
15 limccl 23639 . . . . . . . . . 10  |-  ( F lim
CC  A )  C_  CC
1615, 12sseldi 3601 . . . . . . . . 9  |-  ( ph  ->  R  e.  CC )
1716snssd 4340 . . . . . . . 8  |-  ( ph  ->  { R }  C_  CC )
18 ssid 3624 . . . . . . . . 9  |-  CC  C_  CC
1918a1i 11 . . . . . . . 8  |-  ( ph  ->  CC  C_  CC )
20 cncfss 22702 . . . . . . . 8  |-  ( ( { R }  C_  CC  /\  CC  C_  CC )  ->  ( { A } -cn-> { R } ) 
C_  ( { A } -cn-> CC ) )
2117, 19, 20syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( { A } -cn->
{ R } ) 
C_  ( { A } -cn-> CC ) )
2221adantr 481 . . . . . 6  |-  ( (
ph  /\  A  =  B )  ->  ( { A } -cn-> { R } )  C_  ( { A } -cn-> CC ) )
233rexrd 10089 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR* )
24 iccid 12220 . . . . . . . . . . . 12  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )
2523, 24syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( A [,] A
)  =  { A } )
26 oveq2 6658 . . . . . . . . . . 11  |-  ( A  =  B  ->  ( A [,] A )  =  ( A [,] B
) )
2725, 26sylan9req 2677 . . . . . . . . . 10  |-  ( (
ph  /\  A  =  B )  ->  { A }  =  ( A [,] B ) )
2827eqcomd 2628 . . . . . . . . 9  |-  ( (
ph  /\  A  =  B )  ->  ( A [,] B )  =  { A } )
29 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  =  B )  /\  x  e.  ( A [,] B
) )  ->  x  e.  ( A [,] B
) )
3028adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  =  B )  /\  x  e.  ( A [,] B
) )  ->  ( A [,] B )  =  { A } )
3129, 30eleqtrd 2703 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =  B )  /\  x  e.  ( A [,] B
) )  ->  x  e.  { A } )
32 elsni 4194 . . . . . . . . . . 11  |-  ( x  e.  { A }  ->  x  =  A )
3331, 32syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =  B )  /\  x  e.  ( A [,] B
) )  ->  x  =  A )
3433iftrued 4094 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =  B )  /\  x  e.  ( A [,] B
) )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
3528, 34mpteq12dva 4732 . . . . . . . 8  |-  ( (
ph  /\  A  =  B )  ->  (
x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) )  =  ( x  e.  { A }  |->  R ) )
362, 35syl5eq 2668 . . . . . . 7  |-  ( (
ph  /\  A  =  B )  ->  G  =  ( x  e. 
{ A }  |->  R ) )
373recnd 10068 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
3837adantr 481 . . . . . . . 8  |-  ( (
ph  /\  A  =  B )  ->  A  e.  CC )
3916adantr 481 . . . . . . . 8  |-  ( (
ph  /\  A  =  B )  ->  R  e.  CC )
40 cncfdmsn 40103 . . . . . . . 8  |-  ( ( A  e.  CC  /\  R  e.  CC )  ->  ( x  e.  { A }  |->  R )  e.  ( { A } -cn-> { R } ) )
4138, 39, 40syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  A  =  B )  ->  (
x  e.  { A }  |->  R )  e.  ( { A } -cn->
{ R } ) )
4236, 41eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  A  =  B )  ->  G  e.  ( { A } -cn->
{ R } ) )
4322, 42sseldd 3604 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  G  e.  ( { A } -cn->
CC ) )
4427oveq1d 6665 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  ( { A } -cn-> CC )  =  ( ( A [,] B ) -cn-> CC ) )
4543, 44eleqtrd 2703 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  G  e.  ( ( A [,] B ) -cn-> CC ) )
4645adantlr 751 . . 3  |-  ( ( ( ph  /\  -.  A  <  B )  /\  A  =  B )  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
47 simpll 790 . . . 4  |-  ( ( ( ph  /\  -.  A  <  B )  /\  -.  A  =  B
)  ->  ph )
48 eqcom 2629 . . . . . . . . 9  |-  ( B  =  A  <->  A  =  B )
4948biimpi 206 . . . . . . . 8  |-  ( B  =  A  ->  A  =  B )
5049con3i 150 . . . . . . 7  |-  ( -.  A  =  B  ->  -.  B  =  A
)
5150adantl 482 . . . . . 6  |-  ( ( ( ph  /\  -.  A  <  B )  /\  -.  A  =  B
)  ->  -.  B  =  A )
52 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  -.  A  <  B )  /\  -.  A  =  B
)  ->  -.  A  <  B )
53 pm4.56 516 . . . . . . 7  |-  ( ( -.  B  =  A  /\  -.  A  < 
B )  <->  -.  ( B  =  A  \/  A  <  B ) )
5453biimpi 206 . . . . . 6  |-  ( ( -.  B  =  A  /\  -.  A  < 
B )  ->  -.  ( B  =  A  \/  A  <  B ) )
5551, 52, 54syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  -.  A  <  B )  /\  -.  A  =  B
)  ->  -.  ( B  =  A  \/  A  <  B ) )
5647, 5syl 17 . . . . . 6  |-  ( ( ( ph  /\  -.  A  <  B )  /\  -.  A  =  B
)  ->  B  e.  RR )
5747, 3syl 17 . . . . . 6  |-  ( ( ( ph  /\  -.  A  <  B )  /\  -.  A  =  B
)  ->  A  e.  RR )
5856, 57lttrid 10175 . . . . 5  |-  ( ( ( ph  /\  -.  A  <  B )  /\  -.  A  =  B
)  ->  ( B  <  A  <->  -.  ( B  =  A  \/  A  <  B ) ) )
5955, 58mpbird 247 . . . 4  |-  ( ( ( ph  /\  -.  A  <  B )  /\  -.  A  =  B
)  ->  B  <  A )
60 0ss 3972 . . . . . . . 8  |-  (/)  C_  CC
61 eqid 2622 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
6261cnfldtop 22587 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  e.  Top
63 rest0 20973 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  (/) )  =  { (/)
} )
6462, 63ax-mp 5 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  (/) )  =  { (/)
}
6564eqcomi 2631 . . . . . . . . 9  |-  { (/) }  =  ( ( TopOpen ` fld )t  (/) )
6661, 65, 65cncfcn 22712 . . . . . . . 8  |-  ( (
(/)  C_  CC  /\  (/)  C_  CC )  ->  ( (/) -cn-> (/) )  =  ( { (/) }  Cn  {
(/) } ) )
6760, 60, 66mp2an 708 . . . . . . 7  |-  ( (/) -cn-> (/) )  =  ( {
(/) }  Cn  { (/) } )
68 cncfss 22702 . . . . . . . 8  |-  ( (
(/)  C_  CC  /\  CC  C_  CC )  ->  ( (/)
-cn->
(/) )  C_  ( (/)
-cn-> CC ) )
6960, 18, 68mp2an 708 . . . . . . 7  |-  ( (/) -cn-> (/) )  C_  ( (/) -cn-> CC )
7067, 69eqsstr3i 3636 . . . . . 6  |-  ( {
(/) }  Cn  { (/) } )  C_  ( (/) -cn-> CC )
712a1i 11 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  G  =  ( x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) ) )
72 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  B  <  A )  ->  B  <  A )
7323adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  B  <  A )  ->  A  e.  RR* )
745rexrd 10089 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR* )
7574adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  B  <  A )  ->  B  e.  RR* )
76 icc0 12223 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  B  <  A ) )
7773, 75, 76syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  B  <  A )  ->  ( ( A [,] B )  =  (/) 
<->  B  <  A ) )
7872, 77mpbird 247 . . . . . . . . 9  |-  ( (
ph  /\  B  <  A )  ->  ( A [,] B )  =  (/) )
7978mpteq1d 4738 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  ( x  e.  ( A [,] B
)  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) ) )  =  ( x  e.  (/)  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) ) ) )
80 mpt0 6021 . . . . . . . . 9  |-  ( x  e.  (/)  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) ) )  =  (/)
8180a1i 11 . . . . . . . 8  |-  ( (
ph  /\  B  <  A )  ->  ( x  e.  (/)  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) ) )  =  (/) )
8271, 79, 813eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  B  <  A )  ->  G  =  (/) )
83 0cnf 40090 . . . . . . 7  |-  (/)  e.  ( { (/) }  Cn  { (/)
} )
8482, 83syl6eqel 2709 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  G  e.  ( { (/) }  Cn  { (/)
} ) )
8570, 84sseldi 3601 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  G  e.  ( (/) -cn-> CC ) )
8678eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  B  <  A )  ->  (/)  =  ( A [,] B ) )
8786oveq1d 6665 . . . . 5  |-  ( (
ph  /\  B  <  A )  ->  ( (/) -cn-> CC )  =  ( ( A [,] B ) -cn-> CC ) )
8885, 87eleqtrd 2703 . . . 4  |-  ( (
ph  /\  B  <  A )  ->  G  e.  ( ( A [,] B ) -cn-> CC ) )
8947, 59, 88syl2anc 693 . . 3  |-  ( ( ( ph  /\  -.  A  <  B )  /\  -.  A  =  B
)  ->  G  e.  ( ( A [,] B ) -cn-> CC ) )
9046, 89pm2.61dan 832 . 2  |-  ( (
ph  /\  -.  A  <  B )  ->  G  e.  ( ( A [,] B ) -cn-> CC ) )
9114, 90pm2.61dan 832 1  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    < clt 10074   (,)cioo 12175   [,]cicc 12178   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698    Cn ccn 21028   -cn->ccncf 22679   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-xms 22125  df-ms 22126  df-cncf 22681  df-limc 23630
This theorem is referenced by:  cncfiooiccre  40108  cncfioobd  40110  itgioocnicc  40193  iblcncfioo  40194  fourierdlem73  40396  fourierdlem81  40404  fourierdlem82  40405
  Copyright terms: Public domain W3C validator