Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgioocnicc Structured version   Visualization version   Unicode version

Theorem itgioocnicc 40193
Description: The integral of a piecewise continuous function  F on an open interval is equal to the integral of the continuous function  G, in the corresponding closed interval.  G is equal to  F on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgioocnicc.a  |-  ( ph  ->  A  e.  RR )
itgioocnicc.b  |-  ( ph  ->  B  e.  RR )
itgioocnicc.f  |-  ( ph  ->  F : dom  F --> CC )
itgioocnicc.fcn  |-  ( ph  ->  ( F  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> CC ) )
itgioocnicc.fdom  |-  ( ph  ->  ( A [,] B
)  C_  dom  F )
itgioocnicc.r  |-  ( ph  ->  R  e.  ( ( F  |`  ( A (,) B ) ) lim CC  A ) )
itgioocnicc.l  |-  ( ph  ->  L  e.  ( ( F  |`  ( A (,) B ) ) lim CC  B ) )
itgioocnicc.g  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
Assertion
Ref Expression
itgioocnicc  |-  ( ph  ->  ( G  e.  L^1  /\  S. ( A [,] B ) ( G `  x )  _d x  =  S. ( A [,] B
) ( F `  x )  _d x ) )
Distinct variable groups:    x, A    x, B    x, F    x, L    x, R    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem itgioocnicc
StepHypRef Expression
1 itgioocnicc.a . . 3  |-  ( ph  ->  A  e.  RR )
2 itgioocnicc.b . . 3  |-  ( ph  ->  B  e.  RR )
3 itgioocnicc.g . . . . 5  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )
4 iftrue 4092 . . . . . . . . 9  |-  ( x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
5 iftrue 4092 . . . . . . . . 9  |-  ( x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  R )
64, 5eqtr4d 2659 . . . . . . . 8  |-  ( x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( ( F  |`  ( A (,) B ) ) `  x ) ) ) )
76adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( ( F  |`  ( A (,) B ) ) `  x ) ) ) )
8 iftrue 4092 . . . . . . . . . . . 12  |-  ( x  =  B  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  L )
9 iftrue 4092 . . . . . . . . . . . 12  |-  ( x  =  B  ->  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) )  =  L )
108, 9eqtr4d 2659 . . . . . . . . . . 11  |-  ( x  =  B  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B
) ) `  x
) ) )
1110adantl 482 . . . . . . . . . 10  |-  ( ( -.  x  =  A  /\  x  =  B )  ->  if (
x  =  B ,  L ,  ( F `  x ) )  =  if ( x  =  B ,  L , 
( ( F  |`  ( A (,) B ) ) `  x ) ) )
1211ifeq2d 4105 . . . . . . . . 9  |-  ( ( -.  x  =  A  /\  x  =  B )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( ( F  |`  ( A (,) B ) ) `  x ) ) ) )
1312adantll 750 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( ( F  |`  ( A (,) B ) ) `  x ) ) ) )
14 iffalse 4095 . . . . . . . . . 10  |-  ( -.  x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
1514ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
16 iffalse 4095 . . . . . . . . . 10  |-  ( -.  x  =  B  ->  if ( x  =  B ,  L ,  ( F `  x ) )  =  ( F `
 x ) )
1716adantl 482 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  ( F `  x ) )
18 iffalse 4095 . . . . . . . . . . 11  |-  ( -.  x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B
) ) `  x
) ) )
1918ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B
) ) `  x
) ) )
20 iffalse 4095 . . . . . . . . . . 11  |-  ( -.  x  =  B  ->  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `
 x ) )  =  ( ( F  |`  ( A (,) B
) ) `  x
) )
2120adantl 482 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) )  =  ( ( F  |`  ( A (,) B ) ) `  x ) )
221adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  RR )
2322rexrd 10089 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  RR* )
2423ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  A  e.  RR* )
252rexrd 10089 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  RR* )
2625ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  B  e.  RR* )
272adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
28 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  ( A [,] B ) )
29 eliccre 39728 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  x  e.  ( A [,] B
) )  ->  x  e.  RR )
3022, 27, 28, 29syl3anc 1326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  RR )
3130ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  RR )
321ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  e.  RR )
3330adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  x  e.  RR )
3425adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR* )
35 iccgelb 12230 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  ( A [,] B
) )  ->  A  <_  x )
3623, 34, 28, 35syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  <_  x )
3736adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  <_  x )
38 neqne 2802 . . . . . . . . . . . . . . 15  |-  ( -.  x  =  A  ->  x  =/=  A )
3938adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  x  =/=  A )
4032, 33, 37, 39leneltd 10191 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  <  x )
4140adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  A  <  x )
4230adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  e.  RR )
432ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  B  e.  RR )
44 iccleub 12229 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  ( A [,] B
) )  ->  x  <_  B )
4523, 34, 28, 44syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
4645adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  <_  B )
47 eqcom 2629 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  B  <->  B  =  x )
4847notbii 310 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  =  B  <->  -.  B  =  x )
4948biimpi 206 . . . . . . . . . . . . . . . 16  |-  ( -.  x  =  B  ->  -.  B  =  x
)
5049neqned 2801 . . . . . . . . . . . . . . 15  |-  ( -.  x  =  B  ->  B  =/=  x )
5150adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  B  =/=  x )
5242, 43, 46, 51leneltd 10191 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  <  B )
5352adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  <  B )
5424, 26, 31, 41, 53eliood 39720 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  ( A (,) B
) )
55 fvres 6207 . . . . . . . . . . 11  |-  ( x  e.  ( A (,) B )  ->  (
( F  |`  ( A (,) B ) ) `
 x )  =  ( F `  x
) )
5654, 55syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  (
( F  |`  ( A (,) B ) ) `
 x )  =  ( F `  x
) )
5719, 21, 563eqtrrd 2661 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ( F `  x )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `
 x ) ) ) )
5815, 17, 573eqtrd 2660 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( ( F  |`  ( A (,) B ) ) `  x ) ) ) )
5913, 58pm2.61dan 832 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) ) )
607, 59pm2.61dan 832 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( ( F  |`  ( A (,) B ) ) `  x ) ) ) )
6160mpteq2dva 4744 . . . . 5  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `
 x ) ) ) ) )
623, 61syl5eq 2668 . . . 4  |-  ( ph  ->  G  =  ( x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) ) ) )
63 nfv 1843 . . . . 5  |-  F/ x ph
64 eqid 2622 . . . . 5  |-  ( x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) ) )  =  ( x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) ) )
65 itgioocnicc.fcn . . . . 5  |-  ( ph  ->  ( F  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> CC ) )
66 itgioocnicc.l . . . . 5  |-  ( ph  ->  L  e.  ( ( F  |`  ( A (,) B ) ) lim CC  B ) )
67 itgioocnicc.r . . . . 5  |-  ( ph  ->  R  e.  ( ( F  |`  ( A (,) B ) ) lim CC  A ) )
6863, 64, 1, 2, 65, 66, 67cncfiooicc 40107 . . . 4  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `
 x ) ) ) )  e.  ( ( A [,] B
) -cn-> CC ) )
6962, 68eqeltrd 2701 . . 3  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
70 cniccibl 23607 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  G  e.  ( ( A [,] B ) -cn-> CC ) )  ->  G  e.  L^1 )
711, 2, 69, 70syl3anc 1326 . 2  |-  ( ph  ->  G  e.  L^1 )
724adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
73 limccl 23639 . . . . . . . . . . 11  |-  ( ( F  |`  ( A (,) B ) ) lim CC  A )  C_  CC
7473, 67sseldi 3601 . . . . . . . . . 10  |-  ( ph  ->  R  e.  CC )
7574ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  x  =  A )  ->  R  e.  CC )
7672, 75eqeltrd 2701 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
7714, 8sylan9eq 2676 . . . . . . . . . . 11  |-  ( ( -.  x  =  A  /\  x  =  B )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  L )
7877adantll 750 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  L )
79 limccl 23639 . . . . . . . . . . . 12  |-  ( ( F  |`  ( A (,) B ) ) lim CC  B )  C_  CC
8079, 66sseldi 3601 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  CC )
8180ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  x  =  B )  ->  L  e.  CC )
8278, 81eqeltrd 2701 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
8314, 16sylan9eq 2676 . . . . . . . . . . 11  |-  ( ( -.  x  =  A  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  ( F `  x ) )
8483adantll 750 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  ( F `  x ) )
8556eqcomd 2628 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ( F `  x )  =  ( ( F  |`  ( A (,) B
) ) `  x
) )
86 cncff 22696 . . . . . . . . . . . . . 14  |-  ( ( F  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> CC )  ->  ( F  |`  ( A (,) B ) ) : ( A (,) B ) --> CC )
8765, 86syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  |`  ( A (,) B ) ) : ( A (,) B ) --> CC )
8887ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ( F  |`  ( A (,) B ) ) : ( A (,) B
) --> CC )
8988, 54ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  (
( F  |`  ( A (,) B ) ) `
 x )  e.  CC )
9085, 89eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ( F `  x )  e.  CC )
9184, 90eqeltrd 2701 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
9282, 91pm2.61dan 832 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
9376, 92pm2.61dan 832 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
943fvmpt2 6291 . . . . . . 7  |-  ( ( x  e.  ( A [,] B )  /\  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) )  e.  CC )  ->  ( G `  x )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) )
9528, 93, 94syl2anc 693 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( G `  x )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) )
9695, 93eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( G `  x )  e.  CC )
971, 2, 96itgioo 23582 . . . 4  |-  ( ph  ->  S. ( A (,) B ) ( G `
 x )  _d x  =  S. ( A [,] B ) ( G `  x
)  _d x )
9897eqcomd 2628 . . 3  |-  ( ph  ->  S. ( A [,] B ) ( G `
 x )  _d x  =  S. ( A (,) B ) ( G `  x
)  _d x )
99 ioossicc 12259 . . . . . . 7  |-  ( A (,) B )  C_  ( A [,] B )
10099sseli 3599 . . . . . 6  |-  ( x  e.  ( A (,) B )  ->  x  e.  ( A [,] B
) )
101100, 95sylan2 491 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( G `  x )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) )
1021adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  A  e.  RR )
103 eliooord 12233 . . . . . . . . . 10  |-  ( x  e.  ( A (,) B )  ->  ( A  <  x  /\  x  <  B ) )
104103simpld 475 . . . . . . . . 9  |-  ( x  e.  ( A (,) B )  ->  A  <  x )
105104adantl 482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  A  <  x )
106102, 105gtned 10172 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  =/=  A )
107106neneqd 2799 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  -.  x  =  A )
108107, 14syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
109100, 30sylan2 491 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  RR )
110103simprd 479 . . . . . . . . 9  |-  ( x  e.  ( A (,) B )  ->  x  <  B )
111110adantl 482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  <  B )
112109, 111ltned 10173 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  =/=  B )
113112neneqd 2799 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  -.  x  =  B )
114113, 16syl 17 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  B ,  L ,  ( F `  x ) )  =  ( F `  x
) )
115101, 108, 1143eqtrd 2660 . . . 4  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( G `  x )  =  ( F `  x ) )
116115itgeq2dv 23548 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( G `
 x )  _d x  =  S. ( A (,) B ) ( F `  x
)  _d x )
117 itgioocnicc.f . . . . . 6  |-  ( ph  ->  F : dom  F --> CC )
118117adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  F : dom  F --> CC )
119 itgioocnicc.fdom . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  dom  F )
120119sselda 3603 . . . . 5  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  dom  F )
121118, 120ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
1221, 2, 121itgioo 23582 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( F `
 x )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
12398, 116, 1223eqtrd 2660 . 2  |-  ( ph  ->  S. ( A [,] B ) ( G `
 x )  _d x  =  S. ( A [,] B ) ( F `  x
)  _d x )
12471, 123jca 554 1  |-  ( ph  ->  ( G  e.  L^1  /\  S. ( A [,] B ) ( G `  x )  _d x  =  S. ( A [,] B
) ( F `  x )  _d x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,]cicc 12178   -cn->ccncf 22679   L^1cibl 23386   S.citg 23387   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630
This theorem is referenced by:  fourierdlem81  40404
  Copyright terms: Public domain W3C validator