Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem82 Structured version   Visualization version   Unicode version

Theorem fourierdlem82 40405
Description: Integral by substitution, adding a constant to the function's argument, for a function on an open interval with finite limits ad boundary points. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem82.1  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `
 x ) ) ) )
fourierdlem82.2  |-  ( ph  ->  A  e.  RR )
fourierdlem82.3  |-  ( ph  ->  B  e.  RR )
fourierdlem82.4  |-  ( ph  ->  A  <  B )
fourierdlem82.5  |-  ( ph  ->  F : ( A [,] B ) --> CC )
fourierdlem82.6  |-  ( ph  ->  ( F  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> CC ) )
fourierdlem82.7  |-  ( ph  ->  L  e.  ( F lim
CC  B ) )
fourierdlem82.8  |-  ( ph  ->  R  e.  ( F lim
CC  A ) )
fourierdlem82.9  |-  ( ph  ->  X  e.  RR )
Assertion
Ref Expression
fourierdlem82  |-  ( ph  ->  S. ( A [,] B ) ( F `
 t )  _d t  =  S. ( ( A  -  X
) [,] ( B  -  X ) ) ( F `  ( X  +  t )
)  _d t )
Distinct variable groups:    t, A, x    t, B, x    x, F    t, G    x, L    x, R    t, X, x    ph, t, x
Allowed substitution hints:    R( t)    F( t)    G( x)    L( t)

Proof of Theorem fourierdlem82
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 fourierdlem82.2 . . . . 5  |-  ( ph  ->  A  e.  RR )
2 fourierdlem82.3 . . . . 5  |-  ( ph  ->  B  e.  RR )
3 fourierdlem82.9 . . . . 5  |-  ( ph  ->  X  e.  RR )
4 fourierdlem82.4 . . . . . 6  |-  ( ph  ->  A  <  B )
51, 2, 4ltled 10185 . . . . 5  |-  ( ph  ->  A  <_  B )
61, 2, 3, 5lesub1dd 10643 . . . 4  |-  ( ph  ->  ( A  -  X
)  <_  ( B  -  X ) )
76ditgpos 23620 . . 3  |-  ( ph  ->  S__ [ ( A  -  X )  -> 
( B  -  X
) ] ( G `
 ( X  +  t ) )  _d t  =  S. ( ( A  -  X
) (,) ( B  -  X ) ) ( G `  ( X  +  t )
)  _d t )
8 fourierdlem82.1 . . . . . . 7  |-  G  =  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `
 x ) ) ) )
9 iftrue 4092 . . . . . . . . . . . 12  |-  ( x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  R )
109adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  R )
11 iftrue 4092 . . . . . . . . . . . 12  |-  ( x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
1211adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
1310, 12eqtr4d 2659 . . . . . . . . . 10  |-  ( (
ph  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) ) )
1413adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) ) )
15 iffalse 4095 . . . . . . . . . . . . 13  |-  ( -.  x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B
) ) `  x
) ) )
16 iftrue 4092 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) )  =  L )
1715, 16sylan9eq 2676 . . . . . . . . . . . 12  |-  ( ( -.  x  =  A  /\  x  =  B )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  L )
1817adantll 750 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  L )
19 iffalse 4095 . . . . . . . . . . . . 13  |-  ( -.  x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
20 iftrue 4092 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  L )
2119, 20sylan9eq 2676 . . . . . . . . . . . 12  |-  ( ( -.  x  =  A  /\  x  =  B )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  L )
2221adantll 750 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  L )
2318, 22eqtr4d 2659 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) ) )
24 iffalse 4095 . . . . . . . . . . . 12  |-  ( -.  x  =  B  ->  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `
 x ) )  =  ( ( F  |`  ( A (,) B
) ) `  x
) )
2524adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) )  =  ( ( F  |`  ( A (,) B ) ) `  x ) )
2615ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B
) ) `  x
) ) )
27 iffalse 4095 . . . . . . . . . . . . 13  |-  ( -.  x  =  B  ->  if ( x  =  B ,  L ,  ( F `  x ) )  =  ( F `
 x ) )
2827adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  ( F `  x ) )
2919ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
301rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR* )
3130ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  A  e.  RR* )
322rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  RR* )
3332ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  B  e.  RR* )
341adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  RR )
352adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
36 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  ( A [,] B ) )
37 eliccre 39728 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  x  e.  ( A [,] B
) )  ->  x  e.  RR )
3834, 35, 36, 37syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  RR )
3938ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  RR )
401ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  e.  RR )
4138adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  x  e.  RR )
42 elicc2 12238 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
4334, 35, 42syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  ( A [,] B
)  <->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) ) )
4436, 43mpbid 222 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
4544simp2d 1074 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  <_  x )
4645adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  <_  x )
47 neqne 2802 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  =  A  ->  x  =/=  A )
4847adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  x  =/=  A )
4940, 41, 46, 48leneltd 10191 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  <  x )
5049adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  A  <  x )
5138adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  e.  RR )
522ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  B  e.  RR )
5344simp3d 1075 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
5453adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  <_  B )
55 nesym 2850 . . . . . . . . . . . . . . . . . 18  |-  ( B  =/=  x  <->  -.  x  =  B )
5655biimpri 218 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  =  B  ->  B  =/=  x )
5756adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  B  =/=  x )
5851, 52, 54, 57leneltd 10191 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  <  B )
5958adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  <  B )
6031, 33, 39, 50, 59eliood 39720 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  ( A (,) B
) )
61 fvres 6207 . . . . . . . . . . . . 13  |-  ( x  e.  ( A (,) B )  ->  (
( F  |`  ( A (,) B ) ) `
 x )  =  ( F `  x
) )
6260, 61syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  (
( F  |`  ( A (,) B ) ) `
 x )  =  ( F `  x
) )
6328, 29, 623eqtr4d 2666 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  ( ( F  |`  ( A (,) B
) ) `  x
) )
6425, 26, 633eqtr4d 2666 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) ) )
6523, 64pm2.61dan 832 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `
 x ) ) )  =  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) ) )
6614, 65pm2.61dan 832 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) ) )
6766mpteq2dva 4744 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `
 x ) ) ) )  =  ( x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) ) )
688, 67syl5eq 2668 . . . . . 6  |-  ( ph  ->  G  =  ( x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) ) ) )
6968adantr 481 . . . . 5  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  G  =  ( x  e.  ( A [,] B
)  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L , 
( F `  x
) ) ) ) )
70 eqeq1 2626 . . . . . . 7  |-  ( x  =  ( X  +  t )  ->  (
x  =  A  <->  ( X  +  t )  =  A ) )
71 eqeq1 2626 . . . . . . . 8  |-  ( x  =  ( X  +  t )  ->  (
x  =  B  <->  ( X  +  t )  =  B ) )
72 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( X  +  t )  ->  ( F `  x )  =  ( F `  ( X  +  t
) ) )
7371, 72ifbieq2d 4111 . . . . . . 7  |-  ( x  =  ( X  +  t )  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  if ( ( X  +  t )  =  B ,  L ,  ( F `  ( X  +  t
) ) ) )
7470, 73ifbieq2d 4111 . . . . . 6  |-  ( x  =  ( X  +  t )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  if ( ( X  +  t )  =  A ,  R ,  if ( ( X  +  t )  =  B ,  L , 
( F `  ( X  +  t )
) ) ) )
751adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  A  e.  RR )
76 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )
771, 3resubcld 10458 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  -  X
)  e.  RR )
7877rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  -  X
)  e.  RR* )
7978adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( A  -  X )  e.  RR* )
802, 3resubcld 10458 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  -  X
)  e.  RR )
8180rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  -  X
)  e.  RR* )
8281adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( B  -  X )  e.  RR* )
83 elioo2 12216 . . . . . . . . . . . . . 14  |-  ( ( ( A  -  X
)  e.  RR*  /\  ( B  -  X )  e.  RR* )  ->  (
t  e.  ( ( A  -  X ) (,) ( B  -  X ) )  <->  ( t  e.  RR  /\  ( A  -  X )  < 
t  /\  t  <  ( B  -  X ) ) ) )
8479, 82, 83syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  (
t  e.  ( ( A  -  X ) (,) ( B  -  X ) )  <->  ( t  e.  RR  /\  ( A  -  X )  < 
t  /\  t  <  ( B  -  X ) ) ) )
8576, 84mpbid 222 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  (
t  e.  RR  /\  ( A  -  X
)  <  t  /\  t  <  ( B  -  X ) ) )
8685simp2d 1074 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( A  -  X )  <  t )
873adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  X  e.  RR )
8885simp1d 1073 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  t  e.  RR )
8975, 87, 88ltsubadd2d 10625 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  (
( A  -  X
)  <  t  <->  A  <  ( X  +  t ) ) )
9086, 89mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  A  <  ( X  +  t ) )
9175, 90gtned 10172 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( X  +  t )  =/=  A )
9291neneqd 2799 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  -.  ( X  +  t
)  =  A )
9392iffalsed 4097 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  if ( ( X  +  t )  =  A ,  R ,  if ( ( X  +  t )  =  B ,  L ,  ( F `  ( X  +  t ) ) ) )  =  if ( ( X  +  t )  =  B ,  L ,  ( F `  ( X  +  t ) ) ) )
9487, 88readdcld 10069 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( X  +  t )  e.  RR )
9585simp3d 1075 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  t  <  ( B  -  X
) )
962adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  B  e.  RR )
9787, 88, 96ltaddsub2d 10628 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  (
( X  +  t )  <  B  <->  t  <  ( B  -  X ) ) )
9895, 97mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( X  +  t )  <  B )
9994, 98ltned 10173 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( X  +  t )  =/=  B )
10099neneqd 2799 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  -.  ( X  +  t
)  =  B )
101100iffalsed 4097 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  if ( ( X  +  t )  =  B ,  L ,  ( F `  ( X  +  t ) ) )  =  ( F `
 ( X  +  t ) ) )
10293, 101eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  if ( ( X  +  t )  =  A ,  R ,  if ( ( X  +  t )  =  B ,  L ,  ( F `  ( X  +  t ) ) ) )  =  ( F `  ( X  +  t ) ) )
10374, 102sylan9eqr 2678 . . . . 5  |-  ( ( ( ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  /\  x  =  ( X  +  t ) )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) )  =  ( F `
 ( X  +  t ) ) )
10475, 94, 90ltled 10185 . . . . . 6  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  A  <_  ( X  +  t ) )
10594, 96, 98ltled 10185 . . . . . 6  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( X  +  t )  <_  B )
10675, 96, 94, 104, 105eliccd 39726 . . . . 5  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( X  +  t )  e.  ( A [,] B
) )
107 fourierdlem82.5 . . . . . . . 8  |-  ( ph  ->  F : ( A [,] B ) --> CC )
108 ffun 6048 . . . . . . . 8  |-  ( F : ( A [,] B ) --> CC  ->  Fun 
F )
109107, 108syl 17 . . . . . . 7  |-  ( ph  ->  Fun  F )
110109adantr 481 . . . . . 6  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  Fun  F )
111 fdm 6051 . . . . . . . . . 10  |-  ( F : ( A [,] B ) --> CC  ->  dom 
F  =  ( A [,] B ) )
112107, 111syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  ( A [,] B ) )
113112eqcomd 2628 . . . . . . . 8  |-  ( ph  ->  ( A [,] B
)  =  dom  F
)
114113adantr 481 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( A [,] B )  =  dom  F )
115106, 114eleqtrd 2703 . . . . . 6  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( X  +  t )  e.  dom  F )
116 fvelrn 6352 . . . . . 6  |-  ( ( Fun  F  /\  ( X  +  t )  e.  dom  F )  -> 
( F `  ( X  +  t )
)  e.  ran  F
)
117110, 115, 116syl2anc 693 . . . . 5  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( F `  ( X  +  t ) )  e.  ran  F )
11869, 103, 106, 117fvmptd 6288 . . . 4  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) (,) ( B  -  X )
) )  ->  ( G `  ( X  +  t ) )  =  ( F `  ( X  +  t
) ) )
119118itgeq2dv 23548 . . 3  |-  ( ph  ->  S. ( ( A  -  X ) (,) ( B  -  X
) ) ( G `
 ( X  +  t ) )  _d t  =  S. ( ( A  -  X
) (,) ( B  -  X ) ) ( F `  ( X  +  t )
)  _d t )
120 frn 6053 . . . . . . 7  |-  ( F : ( A [,] B ) --> CC  ->  ran 
F  C_  CC )
121107, 120syl 17 . . . . . 6  |-  ( ph  ->  ran  F  C_  CC )
122121adantr 481 . . . . 5  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ran  F 
C_  CC )
123109adantr 481 . . . . . 6  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  Fun  F )
1241adantr 481 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  A  e.  RR )
1252adantr 481 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  B  e.  RR )
1263adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  X  e.  RR )
12777adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( A  -  X )  e.  RR )
12880adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( B  -  X )  e.  RR )
129 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )
130 eliccre 39728 . . . . . . . . . 10  |-  ( ( ( A  -  X
)  e.  RR  /\  ( B  -  X
)  e.  RR  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X
) ) )  -> 
t  e.  RR )
131127, 128, 129, 130syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  t  e.  RR )
132126, 131readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( X  +  t )  e.  RR )
133 elicc2 12238 . . . . . . . . . . . 12  |-  ( ( ( A  -  X
)  e.  RR  /\  ( B  -  X
)  e.  RR )  ->  ( t  e.  ( ( A  -  X ) [,] ( B  -  X )
)  <->  ( t  e.  RR  /\  ( A  -  X )  <_ 
t  /\  t  <_  ( B  -  X ) ) ) )
134127, 128, 133syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  (
t  e.  ( ( A  -  X ) [,] ( B  -  X ) )  <->  ( t  e.  RR  /\  ( A  -  X )  <_ 
t  /\  t  <_  ( B  -  X ) ) ) )
135129, 134mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  (
t  e.  RR  /\  ( A  -  X
)  <_  t  /\  t  <_  ( B  -  X ) ) )
136135simp2d 1074 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( A  -  X )  <_  t )
137124, 126, 131lesubadd2d 10626 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  (
( A  -  X
)  <_  t  <->  A  <_  ( X  +  t ) ) )
138136, 137mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  A  <_  ( X  +  t ) )
139135simp3d 1075 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  t  <_  ( B  -  X
) )
140126, 131, 125leaddsub2d 10629 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  (
( X  +  t )  <_  B  <->  t  <_  ( B  -  X ) ) )
141139, 140mpbird 247 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( X  +  t )  <_  B )
142124, 125, 132, 138, 141eliccd 39726 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( X  +  t )  e.  ( A [,] B
) )
143113adantr 481 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( A [,] B )  =  dom  F )
144142, 143eleqtrd 2703 . . . . . 6  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( X  +  t )  e.  dom  F )
145123, 144, 116syl2anc 693 . . . . 5  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( F `  ( X  +  t ) )  e.  ran  F )
146122, 145sseldd 3604 . . . 4  |-  ( (
ph  /\  t  e.  ( ( A  -  X ) [,] ( B  -  X )
) )  ->  ( F `  ( X  +  t ) )  e.  CC )
14777, 80, 146itgioo 23582 . . 3  |-  ( ph  ->  S. ( ( A  -  X ) (,) ( B  -  X
) ) ( F `
 ( X  +  t ) )  _d t  =  S. ( ( A  -  X
) [,] ( B  -  X ) ) ( F `  ( X  +  t )
)  _d t )
1487, 119, 1473eqtrrd 2661 . 2  |-  ( ph  ->  S. ( ( A  -  X ) [,] ( B  -  X
) ) ( F `
 ( X  +  t ) )  _d t  =  S__ [
( A  -  X
)  ->  ( B  -  X ) ] ( G `  ( X  +  t ) )  _d t )
149 nfv 1843 . . . 4  |-  F/ x ph
150 fourierdlem82.6 . . . 4  |-  ( ph  ->  ( F  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> CC ) )
151 fourierdlem82.7 . . . . 5  |-  ( ph  ->  L  e.  ( F lim
CC  B ) )
1521, 2, 4, 107limcicciooub 39869 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( A (,) B ) ) lim CC  B )  =  ( F lim CC  B ) )
153151, 152eleqtrrd 2704 . . . 4  |-  ( ph  ->  L  e.  ( ( F  |`  ( A (,) B ) ) lim CC  B ) )
154 fourierdlem82.8 . . . . 5  |-  ( ph  ->  R  e.  ( F lim
CC  A ) )
1551, 2, 4, 107limciccioolb 39853 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( A (,) B ) ) lim CC  A )  =  ( F lim CC  A ) )
156154, 155eleqtrrd 2704 . . . 4  |-  ( ph  ->  R  e.  ( ( F  |`  ( A (,) B ) ) lim CC  A ) )
157149, 8, 1, 2, 150, 153, 156cncfiooicc 40107 . . 3  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> CC ) )
1581, 2, 5, 3, 157itgsbtaddcnst 40198 . 2  |-  ( ph  ->  S__ [ ( A  -  X )  -> 
( B  -  X
) ] ( G `
 ( X  +  t ) )  _d t  =  S__ [ A  ->  B ] ( G `  s )  _d s )
1595ditgpos 23620 . . 3  |-  ( ph  ->  S__ [ A  ->  B ] ( G `  s )  _d s  =  S. ( A (,) B ) ( G `  s )  _d s )
160 fveq2 6191 . . . . 5  |-  ( s  =  t  ->  ( G `  s )  =  ( G `  t ) )
161160cbvitgv 23543 . . . 4  |-  S. ( A (,) B ) ( G `  s
)  _d s  =  S. ( A (,) B ) ( G `
 t )  _d t
1628a1i 11 . . . . . 6  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  G  =  ( x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) ) ) )
1631ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  A  e.  RR )
164 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  -> 
t  e.  ( A (,) B ) )
16530ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  A  e.  RR* )
16632ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  B  e.  RR* )
167 elioo2 12216 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
t  e.  ( A (,) B )  <->  ( t  e.  RR  /\  A  < 
t  /\  t  <  B ) ) )
168165, 166, 167syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  -> 
( t  e.  ( A (,) B )  <-> 
( t  e.  RR  /\  A  <  t  /\  t  <  B ) ) )
169164, 168mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  -> 
( t  e.  RR  /\  A  <  t  /\  t  <  B ) )
170169simp2d 1074 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  A  <  t )
171 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  x  =  t )
172170, 171breqtrrd 4681 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  A  <  x )
173163, 172gtned 10172 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  x  =/=  A )
174173neneqd 2799 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  -.  x  =  A
)
175174iffalsed 4097 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B
) ) `  x
) ) )
176169simp1d 1073 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  -> 
t  e.  RR )
177171, 176eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  x  e.  RR )
178169simp3d 1075 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  -> 
t  <  B )
179171, 178eqbrtrd 4675 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  x  <  B )
180177, 179ltned 10173 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  x  =/=  B )
181180neneqd 2799 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  -.  x  =  B
)
182181iffalsed 4097 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `
 x ) )  =  ( ( F  |`  ( A (,) B
) ) `  x
) )
183171, 164eqeltrd 2701 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  x  e.  ( A (,) B ) )
184183, 61syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  -> 
( ( F  |`  ( A (,) B ) ) `  x )  =  ( F `  x ) )
185 fveq2 6191 . . . . . . . . 9  |-  ( x  =  t  ->  ( F `  x )  =  ( F `  t ) )
186185adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  -> 
( F `  x
)  =  ( F `
 t ) )
187184, 186eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  -> 
( ( F  |`  ( A (,) B ) ) `  x )  =  ( F `  t ) )
188175, 182, 1873eqtrd 2660 . . . . . 6  |-  ( ( ( ph  /\  t  e.  ( A (,) B
) )  /\  x  =  t )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( ( F  |`  ( A (,) B ) ) `  x ) ) )  =  ( F `  t ) )
189 ioossicc 12259 . . . . . . 7  |-  ( A (,) B )  C_  ( A [,] B )
190 simpr 477 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  t  e.  ( A (,) B ) )
191189, 190sseldi 3601 . . . . . 6  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  t  e.  ( A [,] B ) )
192109adantr 481 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  Fun  F )
193113adantr 481 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( A [,] B )  =  dom  F )
194191, 193eleqtrd 2703 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  t  e.  dom  F )
195 fvelrn 6352 . . . . . . 7  |-  ( ( Fun  F  /\  t  e.  dom  F )  -> 
( F `  t
)  e.  ran  F
)
196192, 194, 195syl2anc 693 . . . . . 6  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( F `  t )  e.  ran  F )
197162, 188, 191, 196fvmptd 6288 . . . . 5  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( G `  t )  =  ( F `  t ) )
198197itgeq2dv 23548 . . . 4  |-  ( ph  ->  S. ( A (,) B ) ( G `
 t )  _d t  =  S. ( A (,) B ) ( F `  t
)  _d t )
199161, 198syl5eq 2668 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( G `
 s )  _d s  =  S. ( A (,) B ) ( F `  t
)  _d t )
200107ffvelrnda 6359 . . . 4  |-  ( (
ph  /\  t  e.  ( A [,] B ) )  ->  ( F `  t )  e.  CC )
2011, 2, 200itgioo 23582 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( F `
 t )  _d t  =  S. ( A [,] B ) ( F `  t
)  _d t )
202159, 199, 2013eqtrd 2660 . 2  |-  ( ph  ->  S__ [ A  ->  B ] ( G `  s )  _d s  =  S. ( A [,] B ) ( F `  t )  _d t )
203148, 158, 2023eqtrrd 2661 1  |-  ( ph  ->  S. ( A [,] B ) ( F `
 t )  _d t  =  S. ( ( A  -  X
) [,] ( B  -  X ) ) ( F `  ( X  +  t )
)  _d t )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   (,)cioo 12175   [,]cicc 12178   -cn->ccncf 22679   S.citg 23387   S__cdit 23610   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem93  40416
  Copyright terms: Public domain W3C validator