Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblcncfioo Structured version   Visualization version   Unicode version

Theorem iblcncfioo 40194
Description: A continuous function  F on an open interval  ( A (,) B ) with a finite right limit  R in  A and a finite left limit  L in  B is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblcncfioo.a  |-  ( ph  ->  A  e.  RR )
iblcncfioo.b  |-  ( ph  ->  B  e.  RR )
iblcncfioo.f  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
iblcncfioo.l  |-  ( ph  ->  L  e.  ( F lim
CC  B ) )
iblcncfioo.r  |-  ( ph  ->  R  e.  ( F lim
CC  A ) )
Assertion
Ref Expression
iblcncfioo  |-  ( ph  ->  F  e.  L^1 )

Proof of Theorem iblcncfioo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iblcncfioo.f . . . . 5  |-  ( ph  ->  F  e.  ( ( A (,) B )
-cn-> CC ) )
2 cncff 22696 . . . . 5  |-  ( F  e.  ( ( A (,) B ) -cn-> CC )  ->  F :
( A (,) B
) --> CC )
31, 2syl 17 . . . 4  |-  ( ph  ->  F : ( A (,) B ) --> CC )
43feqmptd 6249 . . 3  |-  ( ph  ->  F  =  ( x  e.  ( A (,) B )  |->  ( F `
 x ) ) )
5 iblcncfioo.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR )
65adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  A  e.  RR )
7 eliooord 12233 . . . . . . . . . . 11  |-  ( x  e.  ( A (,) B )  ->  ( A  <  x  /\  x  <  B ) )
87simpld 475 . . . . . . . . . 10  |-  ( x  e.  ( A (,) B )  ->  A  <  x )
98adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  A  <  x )
106, 9gtned 10172 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  =/=  A )
1110neneqd 2799 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  -.  x  =  A )
1211iffalsed 4097 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
13 elioore 12205 . . . . . . . . . 10  |-  ( x  e.  ( A (,) B )  ->  x  e.  RR )
1413adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  RR )
157simprd 479 . . . . . . . . . 10  |-  ( x  e.  ( A (,) B )  ->  x  <  B )
1615adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  <  B )
1714, 16ltned 10173 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  =/=  B )
1817neneqd 2799 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  -.  x  =  B )
1918iffalsed 4097 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  B ,  L ,  ( F `  x ) )  =  ( F `  x
) )
2012, 19eqtrd 2656 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  ( F `  x ) )
2120eqcomd 2628 . . . 4  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( F `  x )  =  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) )
2221mpteq2dva 4744 . . 3  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( F `  x
) )  =  ( x  e.  ( A (,) B )  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) ) )
234, 22eqtrd 2656 . 2  |-  ( ph  ->  F  =  ( x  e.  ( A (,) B )  |->  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) ) ) )
24 ioossicc 12259 . . . 4  |-  ( A (,) B )  C_  ( A [,] B )
2524a1i 11 . . 3  |-  ( ph  ->  ( A (,) B
)  C_  ( A [,] B ) )
26 ioombl 23333 . . . 4  |-  ( A (,) B )  e. 
dom  vol
2726a1i 11 . . 3  |-  ( ph  ->  ( A (,) B
)  e.  dom  vol )
28 iftrue 4092 . . . . . . 7  |-  ( x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
2928adantl 482 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  =  R )
30 limccl 23639 . . . . . . . 8  |-  ( F lim
CC  A )  C_  CC
31 iblcncfioo.r . . . . . . . 8  |-  ( ph  ->  R  e.  ( F lim
CC  A ) )
3230, 31sseldi 3601 . . . . . . 7  |-  ( ph  ->  R  e.  CC )
3332adantr 481 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  R  e.  CC )
3429, 33eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
3534adantlr 751 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
36 iffalse 4095 . . . . . . . . 9  |-  ( -.  x  =  A  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
3736ad2antlr 763 . . . . . . . 8  |-  ( ( ( ph  /\  -.  x  =  A )  /\  x  =  B
)  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  if ( x  =  B ,  L ,  ( F `  x ) ) )
38 iftrue 4092 . . . . . . . . 9  |-  ( x  =  B  ->  if ( x  =  B ,  L ,  ( F `
 x ) )  =  L )
3938adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  -.  x  =  A )  /\  x  =  B
)  ->  if (
x  =  B ,  L ,  ( F `  x ) )  =  L )
4037, 39eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  -.  x  =  A )  /\  x  =  B
)  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  =  L )
41 limccl 23639 . . . . . . . . 9  |-  ( F lim
CC  B )  C_  CC
42 iblcncfioo.l . . . . . . . . 9  |-  ( ph  ->  L  e.  ( F lim
CC  B ) )
4341, 42sseldi 3601 . . . . . . . 8  |-  ( ph  ->  L  e.  CC )
4443ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  -.  x  =  A )  /\  x  =  B
)  ->  L  e.  CC )
4540, 44eqeltrd 2701 . . . . . 6  |-  ( ( ( ph  /\  -.  x  =  A )  /\  x  =  B
)  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
4645adantllr 755 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
47 simplll 798 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ph )
485rexrd 10089 . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR* )
4947, 48syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  A  e.  RR* )
50 iblcncfioo.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
5150rexrd 10089 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR* )
5247, 51syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  B  e.  RR* )
53 eliccxr 39737 . . . . . . . . . 10  |-  ( x  e.  ( A [,] B )  ->  x  e.  RR* )
5453ad3antlr 767 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  RR* )
5549, 52, 543jca 1242 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* ) )
565ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  e.  RR )
575adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  e.  RR )
5850adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
59 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  ( A [,] B ) )
60 eliccre 39728 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  x  e.  ( A [,] B
) )  ->  x  e.  RR )
6157, 58, 59, 60syl3anc 1326 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  e.  RR )
6261adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  x  e.  RR )
635, 50jca 554 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  e.  RR  /\  B  e.  RR ) )
6463adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A  e.  RR  /\  B  e.  RR ) )
65 elicc2 12238 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
6664, 65syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  ( A [,] B
)  <->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) ) )
6759, 66mpbid 222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
6867simp2d 1074 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A  <_  x )
6968adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  <_  x )
70 df-ne 2795 . . . . . . . . . . . . 13  |-  ( x  =/=  A  <->  -.  x  =  A )
7170biimpri 218 . . . . . . . . . . . 12  |-  ( -.  x  =  A  ->  x  =/=  A )
7271adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  x  =/=  A )
7356, 62, 69, 72leneltd 10191 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  A  <  x )
7473adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  A  <  x )
75 nesym 2850 . . . . . . . . . . . . 13  |-  ( B  =/=  x  <->  -.  x  =  B )
7675biimpri 218 . . . . . . . . . . . 12  |-  ( -.  x  =  B  ->  B  =/=  x )
7776adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  B  =/=  x )
7867simp3d 1075 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
7961, 58, 783jca 1242 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  B  e.  RR  /\  x  <_  B ) )
8079adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  ( x  e.  RR  /\  B  e.  RR  /\  x  <_  B ) )
81 leltne 10127 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  B  e.  RR  /\  x  <_  B )  ->  (
x  <  B  <->  B  =/=  x ) )
8280, 81syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  ( x  <  B  <->  B  =/=  x ) )
8377, 82mpbird 247 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  B )  ->  x  <  B )
8483adantlr 751 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  <  B )
8574, 84jca 554 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ( A  <  x  /\  x  <  B ) )
86 elioo3g 12204 . . . . . . . 8  |-  ( x  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  /\  ( A  <  x  /\  x  <  B ) ) )
8755, 85, 86sylanbrc 698 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  x  e.  ( A (,) B
) )
8847, 87jca 554 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  ( ph  /\  x  e.  ( A (,) B ) ) )
893ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( F `  x )  e.  CC )
9020, 89eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
9188, 90syl 17 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  ( A [,] B ) )  /\  -.  x  =  A
)  /\  -.  x  =  B )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
9246, 91pm2.61dan 832 . . . 4  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  -.  x  =  A )  ->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
9335, 92pm2.61dan 832 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  if (
x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) )  e.  CC )
94 nfv 1843 . . . . 5  |-  F/ x ph
95 eqid 2622 . . . . 5  |-  ( x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) ) )  =  ( x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if (
x  =  B ,  L ,  ( F `  x ) ) ) )
9694, 95, 5, 50, 1, 42, 31cncfiooicc 40107 . . . 4  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )  e.  ( ( A [,] B ) -cn-> CC ) )
97 cniccibl 23607 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
x  e.  ( A [,] B )  |->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `
 x ) ) ) )  e.  ( ( A [,] B
) -cn-> CC ) )  -> 
( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )  e.  L^1 )
985, 50, 96, 97syl3anc 1326 . . 3  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )  e.  L^1 )
9925, 27, 93, 98iblss 23571 . 2  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  if ( x  =  A ,  R ,  if ( x  =  B ,  L ,  ( F `  x ) ) ) )  e.  L^1 )
10023, 99eqeltrd 2701 1  |-  ( ph  ->  F  e.  L^1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,]cicc 12178   -cn->ccncf 22679   volcvol 23232   L^1cibl 23386   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-0p 23437  df-limc 23630
This theorem is referenced by:  fourierdlem69  40392  fourierdlem73  40396  fourierdlem81  40404  fourierdlem93  40416
  Copyright terms: Public domain W3C validator