Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotsqcscsq Structured version   Visualization version   Unicode version

Theorem cotsqcscsq 42503
Description: Prove the tangent squared cosecant squared identity  ( 1  +  ( ( cot A ) ^ 2 ) ) = ( ( csc  A ) ^ 2 ) ). (Contributed by David A. Wheeler, 27-May-2015.)
Assertion
Ref Expression
cotsqcscsq  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( 1  +  ( ( cot `  A
) ^ 2 ) )  =  ( ( csc `  A ) ^ 2 ) )

Proof of Theorem cotsqcscsq
StepHypRef Expression
1 cotval 42490 . . . 4  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( cot `  A
)  =  ( ( cos `  A )  /  ( sin `  A
) ) )
21oveq1d 6665 . . 3  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( cot `  A
) ^ 2 )  =  ( ( ( cos `  A )  /  ( sin `  A
) ) ^ 2 ) )
32oveq2d 6666 . 2  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( 1  +  ( ( cot `  A
) ^ 2 ) )  =  ( 1  +  ( ( ( cos `  A )  /  ( sin `  A
) ) ^ 2 ) ) )
4 sincossq 14906 . . . . 5  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
54oveq1d 6665 . . . 4  |-  ( A  e.  CC  ->  (
( ( ( sin `  A ) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  /  ( ( sin `  A ) ^ 2 ) )  =  ( 1  /  ( ( sin `  A ) ^ 2 ) ) )
65adantr 481 . . 3  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( ( ( sin `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) )  /  ( ( sin `  A ) ^ 2 ) )  =  ( 1  / 
( ( sin `  A
) ^ 2 ) ) )
7 sincl 14856 . . . . . . . 8  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
87sqcld 13006 . . . . . . 7  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  e.  CC )
98adantr 481 . . . . . 6  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( sin `  A
) ^ 2 )  e.  CC )
10 sqne0 12930 . . . . . . . 8  |-  ( ( sin `  A )  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  =/=  0  <->  ( sin `  A )  =/=  0
) )
117, 10syl 17 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  =/=  0  <->  ( sin `  A )  =/=  0
) )
1211biimpar 502 . . . . . 6  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( sin `  A
) ^ 2 )  =/=  0 )
139, 12dividd 10799 . . . . 5  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( ( sin `  A ) ^ 2 )  /  ( ( sin `  A ) ^ 2 ) )  =  1 )
1413oveq1d 6665 . . . 4  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( ( ( sin `  A ) ^ 2 )  / 
( ( sin `  A
) ^ 2 ) )  +  ( ( ( cos `  A
) ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) )  =  ( 1  +  ( ( ( cos `  A
) ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) ) )
15 coscl 14857 . . . . . . 7  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
1615sqcld 13006 . . . . . 6  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  e.  CC )
1716adantr 481 . . . . 5  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( cos `  A
) ^ 2 )  e.  CC )
189, 17, 9, 12divdird 10839 . . . 4  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( ( ( sin `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) )  /  ( ( sin `  A ) ^ 2 ) )  =  ( ( ( ( sin `  A
) ^ 2 )  /  ( ( sin `  A ) ^ 2 ) )  +  ( ( ( cos `  A
) ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) ) )
1915, 7jca 554 . . . . . 6  |-  ( A  e.  CC  ->  (
( cos `  A
)  e.  CC  /\  ( sin `  A )  e.  CC ) )
20 2nn0 11309 . . . . . . . 8  |-  2  e.  NN0
21 expdiv 12911 . . . . . . . 8  |-  ( ( ( cos `  A
)  e.  CC  /\  ( ( sin `  A
)  e.  CC  /\  ( sin `  A )  =/=  0 )  /\  2  e.  NN0 )  -> 
( ( ( cos `  A )  /  ( sin `  A ) ) ^ 2 )  =  ( ( ( cos `  A ) ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) )
2220, 21mp3an3 1413 . . . . . . 7  |-  ( ( ( cos `  A
)  e.  CC  /\  ( ( sin `  A
)  e.  CC  /\  ( sin `  A )  =/=  0 ) )  ->  ( ( ( cos `  A )  /  ( sin `  A
) ) ^ 2 )  =  ( ( ( cos `  A
) ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) )
2322anassrs 680 . . . . . 6  |-  ( ( ( ( cos `  A
)  e.  CC  /\  ( sin `  A )  e.  CC )  /\  ( sin `  A )  =/=  0 )  -> 
( ( ( cos `  A )  /  ( sin `  A ) ) ^ 2 )  =  ( ( ( cos `  A ) ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) )
2419, 23sylan 488 . . . . 5  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( ( cos `  A )  /  ( sin `  A ) ) ^ 2 )  =  ( ( ( cos `  A ) ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) )
2524oveq2d 6666 . . . 4  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( 1  +  ( ( ( cos `  A
)  /  ( sin `  A ) ) ^
2 ) )  =  ( 1  +  ( ( ( cos `  A
) ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) ) )
2614, 18, 253eqtr4rd 2667 . . 3  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( 1  +  ( ( ( cos `  A
)  /  ( sin `  A ) ) ^
2 ) )  =  ( ( ( ( sin `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) )  /  ( ( sin `  A ) ^ 2 ) ) )
27 cscval 42489 . . . . 5  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( csc `  A
)  =  ( 1  /  ( sin `  A
) ) )
2827oveq1d 6665 . . . 4  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( csc `  A
) ^ 2 )  =  ( ( 1  /  ( sin `  A
) ) ^ 2 ) )
29 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
30 expdiv 12911 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( ( sin `  A
)  e.  CC  /\  ( sin `  A )  =/=  0 )  /\  2  e.  NN0 )  -> 
( ( 1  / 
( sin `  A
) ) ^ 2 )  =  ( ( 1 ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) )
3129, 20, 30mp3an13 1415 . . . . . 6  |-  ( ( ( sin `  A
)  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( 1  / 
( sin `  A
) ) ^ 2 )  =  ( ( 1 ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) )
327, 31sylan 488 . . . . 5  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( 1  / 
( sin `  A
) ) ^ 2 )  =  ( ( 1 ^ 2 )  /  ( ( sin `  A ) ^ 2 ) ) )
33 sq1 12958 . . . . . 6  |-  ( 1 ^ 2 )  =  1
3433oveq1i 6660 . . . . 5  |-  ( ( 1 ^ 2 )  /  ( ( sin `  A ) ^ 2 ) )  =  ( 1  /  ( ( sin `  A ) ^ 2 ) )
3532, 34syl6eq 2672 . . . 4  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( 1  / 
( sin `  A
) ) ^ 2 )  =  ( 1  /  ( ( sin `  A ) ^ 2 ) ) )
3628, 35eqtrd 2656 . . 3  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( csc `  A
) ^ 2 )  =  ( 1  / 
( ( sin `  A
) ^ 2 ) ) )
376, 26, 363eqtr4rd 2667 . 2  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( ( csc `  A
) ^ 2 )  =  ( 1  +  ( ( ( cos `  A )  /  ( sin `  A ) ) ^ 2 ) ) )
383, 37eqtr4d 2659 1  |-  ( ( A  e.  CC  /\  ( sin `  A )  =/=  0 )  -> 
( 1  +  ( ( cot `  A
) ^ 2 ) )  =  ( ( csc `  A ) ^ 2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    / cdiv 10684   2c2 11070   NN0cn0 11292   ^cexp 12860   sincsin 14794   cosccos 14795   cscccsc 42483   cotccot 42484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-csc 42486  df-cot 42487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator