Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem24 Structured version   Visualization version   Unicode version

Theorem fourierdlem24 40348
Description: A sufficient condition for module being nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem24  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  ( A  mod  ( 2  x.  pi ) )  =/=  0
)

Proof of Theorem fourierdlem24
StepHypRef Expression
1 0zd 11389 . . . . 5  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  0  e.  ZZ )
2 pire 24210 . . . . . . . . . 10  |-  pi  e.  RR
32renegcli 10342 . . . . . . . . 9  |-  -u pi  e.  RR
4 iccssre 12255 . . . . . . . . 9  |-  ( (
-u pi  e.  RR  /\  pi  e.  RR )  ->  ( -u pi [,] pi )  C_  RR )
53, 2, 4mp2an 708 . . . . . . . 8  |-  ( -u pi [,] pi )  C_  RR
6 eldifi 3732 . . . . . . . 8  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  A  e.  (
-u pi [,] pi ) )
75, 6sseldi 3601 . . . . . . 7  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  A  e.  RR )
87adantr 481 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  A  e.  RR )
9 2re 11090 . . . . . . . 8  |-  2  e.  RR
109, 2remulcli 10054 . . . . . . 7  |-  ( 2  x.  pi )  e.  RR
1110a1i 11 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  (
2  x.  pi )  e.  RR )
12 simpr 477 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  0  <  A )
13 2pos 11112 . . . . . . . 8  |-  0  <  2
14 pipos 24212 . . . . . . . 8  |-  0  <  pi
159, 2, 13, 14mulgt0ii 10170 . . . . . . 7  |-  0  <  ( 2  x.  pi )
1615a1i 11 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  0  <  ( 2  x.  pi ) )
178, 11, 12, 16divgt0d 10959 . . . . 5  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  0  <  ( A  /  (
2  x.  pi ) ) )
1811, 16elrpd 11869 . . . . . . . 8  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  (
2  x.  pi )  e.  RR+ )
192a1i 11 . . . . . . . . . 10  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  pi  e.  RR )
2010a1i 11 . . . . . . . . . 10  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  ( 2  x.  pi )  e.  RR )
213rexri 10097 . . . . . . . . . . . 12  |-  -u pi  e.  RR*
2221a1i 11 . . . . . . . . . . 11  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  -u pi  e.  RR* )
2319rexrd 10089 . . . . . . . . . . 11  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  pi  e.  RR* )
24 iccleub 12229 . . . . . . . . . . 11  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR*  /\  A  e.  ( -u pi [,] pi ) )  ->  A  <_  pi )
2522, 23, 6, 24syl3anc 1326 . . . . . . . . . 10  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  A  <_  pi )
26 pirp 24213 . . . . . . . . . . 11  |-  pi  e.  RR+
27 2timesgt 39500 . . . . . . . . . . 11  |-  ( pi  e.  RR+  ->  pi  <  ( 2  x.  pi ) )
2826, 27mp1i 13 . . . . . . . . . 10  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  pi  <  (
2  x.  pi ) )
297, 19, 20, 25, 28lelttrd 10195 . . . . . . . . 9  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  A  <  (
2  x.  pi ) )
3029adantr 481 . . . . . . . 8  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  A  <  ( 2  x.  pi ) )
318, 11, 18, 30ltdiv1dd 11929 . . . . . . 7  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  ( A  /  ( 2  x.  pi ) )  < 
( ( 2  x.  pi )  /  (
2  x.  pi ) ) )
3210recni 10052 . . . . . . . 8  |-  ( 2  x.  pi )  e.  CC
3310, 15gt0ne0ii 10564 . . . . . . . 8  |-  ( 2  x.  pi )  =/=  0
3432, 33dividi 10758 . . . . . . 7  |-  ( ( 2  x.  pi )  /  ( 2  x.  pi ) )  =  1
3531, 34syl6breq 4694 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  ( A  /  ( 2  x.  pi ) )  <  1 )
36 0p1e1 11132 . . . . . 6  |-  ( 0  +  1 )  =  1
3735, 36syl6breqr 4695 . . . . 5  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  ( A  /  ( 2  x.  pi ) )  < 
( 0  +  1 ) )
38 btwnnz 11453 . . . . 5  |-  ( ( 0  e.  ZZ  /\  0  <  ( A  / 
( 2  x.  pi ) )  /\  ( A  /  ( 2  x.  pi ) )  < 
( 0  +  1 ) )  ->  -.  ( A  /  (
2  x.  pi ) )  e.  ZZ )
391, 17, 37, 38syl3anc 1326 . . . 4  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  0  < 
A )  ->  -.  ( A  /  (
2  x.  pi ) )  e.  ZZ )
40 simpl 473 . . . . 5  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  -.  0  <  A )  ->  A  e.  ( ( -u pi [,] pi )  \  {
0 } ) )
417adantr 481 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  -.  0  <  A )  ->  A  e.  RR )
42 0red 10041 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  -.  0  <  A )  ->  0  e.  RR )
43 simpr 477 . . . . . . 7  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  -.  0  <  A )  ->  -.  0  <  A )
4441, 42, 43nltled 10187 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  -.  0  <  A )  ->  A  <_  0 )
45 eldifsni 4320 . . . . . . . 8  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  A  =/=  0
)
4645necomd 2849 . . . . . . 7  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  0  =/=  A
)
4746adantr 481 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  -.  0  <  A )  ->  0  =/=  A )
4841, 42, 44, 47leneltd 10191 . . . . 5  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  -.  0  <  A )  ->  A  <  0 )
49 neg1z 11413 . . . . . . 7  |-  -u 1  e.  ZZ
5049a1i 11 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  -u 1  e.  ZZ )
5133a1i 11 . . . . . . . . 9  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  ( 2  x.  pi )  =/=  0
)
527, 20, 51redivcld 10853 . . . . . . . 8  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  ( A  / 
( 2  x.  pi ) )  e.  RR )
5352adantr 481 . . . . . . 7  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  ( A  /  ( 2  x.  pi ) )  e.  RR )
54 1red 10055 . . . . . . 7  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  1  e.  RR )
557recnd 10068 . . . . . . . . . 10  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  A  e.  CC )
5655adantr 481 . . . . . . . . 9  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  A  e.  CC )
5732a1i 11 . . . . . . . . 9  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  (
2  x.  pi )  e.  CC )
5833a1i 11 . . . . . . . . 9  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  (
2  x.  pi )  =/=  0 )
5956, 57, 58divnegd 10814 . . . . . . . 8  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  -u ( A  /  ( 2  x.  pi ) )  =  ( -u A  / 
( 2  x.  pi ) ) )
607renegcld 10457 . . . . . . . . . . 11  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  -u A  e.  RR )
6160adantr 481 . . . . . . . . . 10  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  -u A  e.  RR )
6210a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  (
2  x.  pi )  e.  RR )
63 2rp 11837 . . . . . . . . . . . 12  |-  2  e.  RR+
64 rpmulcl 11855 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  pi  e.  RR+ )  ->  (
2  x.  pi )  e.  RR+ )
6563, 26, 64mp2an 708 . . . . . . . . . . 11  |-  ( 2  x.  pi )  e.  RR+
6665a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  (
2  x.  pi )  e.  RR+ )
67 iccgelb 12230 . . . . . . . . . . . . . 14  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR*  /\  A  e.  ( -u pi [,] pi ) )  ->  -u pi  <_  A )
6822, 23, 6, 67syl3anc 1326 . . . . . . . . . . . . 13  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  -u pi  <_  A
)
6919, 7, 68lenegcon1d 10609 . . . . . . . . . . . 12  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  -u A  <_  pi )
7060, 19, 20, 69, 28lelttrd 10195 . . . . . . . . . . 11  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  -u A  <  (
2  x.  pi ) )
7170adantr 481 . . . . . . . . . 10  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  -u A  <  ( 2  x.  pi ) )
7261, 62, 66, 71ltdiv1dd 11929 . . . . . . . . 9  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  ( -u A  /  ( 2  x.  pi ) )  <  ( ( 2  x.  pi )  / 
( 2  x.  pi ) ) )
7372, 34syl6breq 4694 . . . . . . . 8  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  ( -u A  /  ( 2  x.  pi ) )  <  1 )
7459, 73eqbrtrd 4675 . . . . . . 7  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  -u ( A  /  ( 2  x.  pi ) )  <  1 )
7553, 54, 74ltnegcon1d 10607 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  -u 1  <  ( A  /  (
2  x.  pi ) ) )
767adantr 481 . . . . . . . 8  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  A  e.  RR )
77 simpr 477 . . . . . . . 8  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  A  <  0 )
7876, 66, 77divlt0gt0d 39498 . . . . . . 7  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  ( A  /  ( 2  x.  pi ) )  <  0 )
79 neg1cn 11124 . . . . . . . . 9  |-  -u 1  e.  CC
80 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
8179, 80addcomi 10227 . . . . . . . 8  |-  ( -u
1  +  1 )  =  ( 1  + 
-u 1 )
82 1pneg1e0 11129 . . . . . . . 8  |-  ( 1  +  -u 1 )  =  0
8381, 82eqtr2i 2645 . . . . . . 7  |-  0  =  ( -u 1  +  1 )
8478, 83syl6breq 4694 . . . . . 6  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  ( A  /  ( 2  x.  pi ) )  < 
( -u 1  +  1 ) )
85 btwnnz 11453 . . . . . 6  |-  ( (
-u 1  e.  ZZ  /\  -u 1  <  ( A  /  ( 2  x.  pi ) )  /\  ( A  /  (
2  x.  pi ) )  <  ( -u
1  +  1 ) )  ->  -.  ( A  /  ( 2  x.  pi ) )  e.  ZZ )
8650, 75, 84, 85syl3anc 1326 . . . . 5  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  A  <  0 )  ->  -.  ( A  /  (
2  x.  pi ) )  e.  ZZ )
8740, 48, 86syl2anc 693 . . . 4  |-  ( ( A  e.  ( (
-u pi [,] pi )  \  { 0 } )  /\  -.  0  <  A )  ->  -.  ( A  /  (
2  x.  pi ) )  e.  ZZ )
8839, 87pm2.61dan 832 . . 3  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  -.  ( A  /  ( 2  x.  pi ) )  e.  ZZ )
8965a1i 11 . . . 4  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  ( 2  x.  pi )  e.  RR+ )
90 mod0 12675 . . . 4  |-  ( ( A  e.  RR  /\  ( 2  x.  pi )  e.  RR+ )  -> 
( ( A  mod  ( 2  x.  pi ) )  =  0  <-> 
( A  /  (
2  x.  pi ) )  e.  ZZ ) )
917, 89, 90syl2anc 693 . . 3  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  ( ( A  mod  ( 2  x.  pi ) )  =  0  <->  ( A  / 
( 2  x.  pi ) )  e.  ZZ ) )
9288, 91mtbird 315 . 2  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  -.  ( A  mod  ( 2  x.  pi ) )  =  0 )
9392neqned 2801 1  |-  ( A  e.  ( ( -u pi [,] pi )  \  { 0 } )  ->  ( A  mod  ( 2  x.  pi ) )  =/=  0
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    <_ cle 10075   -ucneg 10267    / cdiv 10684   2c2 11070   ZZcz 11377   RR+crp 11832   [,]cicc 12178    mod cmo 12668   picpi 14797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  fourierdlem66  40389
  Copyright terms: Public domain W3C validator