MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jensenlem2 Structured version   Visualization version   Unicode version

Theorem jensenlem2 24714
Description: Lemma for jensen 24715. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
jensen.1  |-  ( ph  ->  D  C_  RR )
jensen.2  |-  ( ph  ->  F : D --> RR )
jensen.3  |-  ( (
ph  /\  ( a  e.  D  /\  b  e.  D ) )  -> 
( a [,] b
)  C_  D )
jensen.4  |-  ( ph  ->  A  e.  Fin )
jensen.5  |-  ( ph  ->  T : A --> ( 0 [,) +oo ) )
jensen.6  |-  ( ph  ->  X : A --> D )
jensen.7  |-  ( ph  ->  0  <  (fld  gsumg  T ) )
jensen.8  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( F `  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )  <_  ( (
t  x.  ( F `
 x ) )  +  ( ( 1  -  t )  x.  ( F `  y
) ) ) )
jensenlem.1  |-  ( ph  ->  -.  z  e.  B
)
jensenlem.2  |-  ( ph  ->  ( B  u.  {
z } )  C_  A )
jensenlem.s  |-  S  =  (fld 
gsumg  ( T  |`  B ) )
jensenlem.l  |-  L  =  (fld 
gsumg  ( T  |`  ( B  u.  { z } ) ) )
jensenlem.3  |-  ( ph  ->  S  e.  RR+ )
jensenlem.4  |-  ( ph  ->  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  e.  D
)
jensenlem.5  |-  ( ph  ->  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  <_ 
( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) )
Assertion
Ref Expression
jensenlem2  |-  ( ph  ->  ( ( (fld  gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) ) )  /  L )  e.  D  /\  ( F `  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) ) )  /  L ) )  <_  ( (fld  gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  ( B  u.  { z } ) ) )  /  L ) ) )
Distinct variable groups:    a, b,
t, x, y, A    D, a, b, t, x, y    ph, a, b, t, x, y    F, a, b, t, x, y    T, a, b, t, x, y    X, a, b, t, x, y    z, a, B, b, t, x, y    t, L, x, y    S, a, b, t, x, y
Allowed substitution hints:    ph( z)    A( z)    D( z)    S( z)    T( z)    F( z)    L( z, a, b)    X( z)

Proof of Theorem jensenlem2
StepHypRef Expression
1 cnfld0 19770 . . . . . . 7  |-  0  =  ( 0g ` fld )
2 cnring 19768 . . . . . . . 8  |-fld  e.  Ring
3 ringabl 18580 . . . . . . . 8  |-  (fld  e.  Ring  ->fld  e.  Abel )
42, 3mp1i 13 . . . . . . 7  |-  ( ph  ->fld  e. 
Abel )
5 jensen.4 . . . . . . . 8  |-  ( ph  ->  A  e.  Fin )
6 jensenlem.2 . . . . . . . . 9  |-  ( ph  ->  ( B  u.  {
z } )  C_  A )
76unssad 3790 . . . . . . . 8  |-  ( ph  ->  B  C_  A )
8 ssfi 8180 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  C_  A )  ->  B  e.  Fin )
95, 7, 8syl2anc 693 . . . . . . 7  |-  ( ph  ->  B  e.  Fin )
10 resubdrg 19954 . . . . . . . . 9  |-  ( RR  e.  (SubRing ` fld )  /\ RRfld  e.  DivRing )
1110simpli 474 . . . . . . . 8  |-  RR  e.  (SubRing ` fld )
12 subrgsubg 18786 . . . . . . . 8  |-  ( RR  e.  (SubRing ` fld )  ->  RR  e.  (SubGrp ` fld ) )
1311, 12mp1i 13 . . . . . . 7  |-  ( ph  ->  RR  e.  (SubGrp ` fld )
)
14 remulcl 10021 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
1514adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  x.  y
)  e.  RR )
16 jensen.5 . . . . . . . . . 10  |-  ( ph  ->  T : A --> ( 0 [,) +oo ) )
17 rge0ssre 12280 . . . . . . . . . 10  |-  ( 0 [,) +oo )  C_  RR
18 fss 6056 . . . . . . . . . 10  |-  ( ( T : A --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  RR )  ->  T : A --> RR )
1916, 17, 18sylancl 694 . . . . . . . . 9  |-  ( ph  ->  T : A --> RR )
20 jensen.6 . . . . . . . . . 10  |-  ( ph  ->  X : A --> D )
21 jensen.1 . . . . . . . . . 10  |-  ( ph  ->  D  C_  RR )
2220, 21fssd 6057 . . . . . . . . 9  |-  ( ph  ->  X : A --> RR )
23 inidm 3822 . . . . . . . . 9  |-  ( A  i^i  A )  =  A
2415, 19, 22, 5, 5, 23off 6912 . . . . . . . 8  |-  ( ph  ->  ( T  oF  x.  X ) : A --> RR )
2524, 7fssresd 6071 . . . . . . 7  |-  ( ph  ->  ( ( T  oF  x.  X )  |`  B ) : B --> RR )
26 c0ex 10034 . . . . . . . . 9  |-  0  e.  _V
2726a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  _V )
2825, 9, 27fdmfifsupp 8285 . . . . . . 7  |-  ( ph  ->  ( ( T  oF  x.  X )  |`  B ) finSupp  0 )
291, 4, 9, 13, 25, 28gsumsubgcl 18320 . . . . . 6  |-  ( ph  ->  (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  e.  RR )
3029recnd 10068 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  e.  CC )
31 ax-resscn 9993 . . . . . . . 8  |-  RR  C_  CC
3217, 31sstri 3612 . . . . . . 7  |-  ( 0 [,) +oo )  C_  CC
336unssbd 3791 . . . . . . . . 9  |-  ( ph  ->  { z }  C_  A )
34 vex 3203 . . . . . . . . . 10  |-  z  e. 
_V
3534snss 4316 . . . . . . . . 9  |-  ( z  e.  A  <->  { z }  C_  A )
3633, 35sylibr 224 . . . . . . . 8  |-  ( ph  ->  z  e.  A )
3716, 36ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( T `  z
)  e.  ( 0 [,) +oo ) )
3832, 37sseldi 3601 . . . . . 6  |-  ( ph  ->  ( T `  z
)  e.  CC )
3920, 36ffvelrnd 6360 . . . . . . . 8  |-  ( ph  ->  ( X `  z
)  e.  D )
4021, 39sseldd 3604 . . . . . . 7  |-  ( ph  ->  ( X `  z
)  e.  RR )
4140recnd 10068 . . . . . 6  |-  ( ph  ->  ( X `  z
)  e.  CC )
4238, 41mulcld 10060 . . . . 5  |-  ( ph  ->  ( ( T `  z )  x.  ( X `  z )
)  e.  CC )
43 jensen.2 . . . . . . . 8  |-  ( ph  ->  F : D --> RR )
44 jensen.3 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  D  /\  b  e.  D ) )  -> 
( a [,] b
)  C_  D )
45 jensen.7 . . . . . . . 8  |-  ( ph  ->  0  <  (fld  gsumg  T ) )
46 jensen.8 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  D  /\  y  e.  D  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( F `  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )  <_  ( (
t  x.  ( F `
 x ) )  +  ( ( 1  -  t )  x.  ( F `  y
) ) ) )
47 jensenlem.1 . . . . . . . 8  |-  ( ph  ->  -.  z  e.  B
)
48 jensenlem.s . . . . . . . 8  |-  S  =  (fld 
gsumg  ( T  |`  B ) )
49 jensenlem.l . . . . . . . 8  |-  L  =  (fld 
gsumg  ( T  |`  ( B  u.  { z } ) ) )
5021, 43, 44, 5, 16, 20, 45, 46, 47, 6, 48, 49jensenlem1 24713 . . . . . . 7  |-  ( ph  ->  L  =  ( S  +  ( T `  z ) ) )
51 jensenlem.3 . . . . . . . . 9  |-  ( ph  ->  S  e.  RR+ )
5251rpred 11872 . . . . . . . 8  |-  ( ph  ->  S  e.  RR )
53 elrege0 12278 . . . . . . . . . 10  |-  ( ( T `  z )  e.  ( 0 [,) +oo )  <->  ( ( T `
 z )  e.  RR  /\  0  <_ 
( T `  z
) ) )
5453simplbi 476 . . . . . . . . 9  |-  ( ( T `  z )  e.  ( 0 [,) +oo )  ->  ( T `
 z )  e.  RR )
5537, 54syl 17 . . . . . . . 8  |-  ( ph  ->  ( T `  z
)  e.  RR )
5652, 55readdcld 10069 . . . . . . 7  |-  ( ph  ->  ( S  +  ( T `  z ) )  e.  RR )
5750, 56eqeltrd 2701 . . . . . 6  |-  ( ph  ->  L  e.  RR )
5857recnd 10068 . . . . 5  |-  ( ph  ->  L  e.  CC )
59 0red 10041 . . . . . . 7  |-  ( ph  ->  0  e.  RR )
6051rpgt0d 11875 . . . . . . 7  |-  ( ph  ->  0  <  S )
6153simprbi 480 . . . . . . . . . 10  |-  ( ( T `  z )  e.  ( 0 [,) +oo )  ->  0  <_ 
( T `  z
) )
6237, 61syl 17 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( T `  z ) )
6352, 55addge01d 10615 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  ( T `  z )  <->  S  <_  ( S  +  ( T `  z ) ) ) )
6462, 63mpbid 222 . . . . . . . 8  |-  ( ph  ->  S  <_  ( S  +  ( T `  z ) ) )
6564, 50breqtrrd 4681 . . . . . . 7  |-  ( ph  ->  S  <_  L )
6659, 52, 57, 60, 65ltletrd 10197 . . . . . 6  |-  ( ph  ->  0  <  L )
6766gt0ne0d 10592 . . . . 5  |-  ( ph  ->  L  =/=  0 )
6830, 42, 58, 67divdird 10839 . . . 4  |-  ( ph  ->  ( ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  +  ( ( T `  z )  x.  ( X `  z )
) )  /  L
)  =  ( ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  L )  +  ( ( ( T `  z )  x.  ( X `  z )
)  /  L ) ) )
69 cnfldbas 19750 . . . . . . 7  |-  CC  =  ( Base ` fld )
70 cnfldadd 19751 . . . . . . 7  |-  +  =  ( +g  ` fld )
71 ringcmn 18581 . . . . . . . 8  |-  (fld  e.  Ring  ->fld  e. CMnd )
722, 71mp1i 13 . . . . . . 7  |-  ( ph  ->fld  e. CMnd
)
737sselda 3603 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  A )
7416ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( T `  x )  e.  ( 0 [,) +oo ) )
7573, 74syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  ( T `  x )  e.  ( 0 [,) +oo ) )
7632, 75sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  ( T `  x )  e.  CC )
7721adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  D  C_  RR )
7820ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( X `  x )  e.  D )
7973, 78syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  ( X `  x )  e.  D )
8077, 79sseldd 3604 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  ( X `  x )  e.  RR )
8180recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  ( X `  x )  e.  CC )
8276, 81mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (
( T `  x
)  x.  ( X `
 x ) )  e.  CC )
83 fveq2 6191 . . . . . . . 8  |-  ( x  =  z  ->  ( T `  x )  =  ( T `  z ) )
84 fveq2 6191 . . . . . . . 8  |-  ( x  =  z  ->  ( X `  x )  =  ( X `  z ) )
8583, 84oveq12d 6668 . . . . . . 7  |-  ( x  =  z  ->  (
( T `  x
)  x.  ( X `
 x ) )  =  ( ( T `
 z )  x.  ( X `  z
) ) )
8669, 70, 72, 9, 82, 36, 47, 42, 85gsumunsn 18359 . . . . . 6  |-  ( ph  ->  (fld 
gsumg  ( x  e.  ( B  u.  { z } )  |->  ( ( T `  x )  x.  ( X `  x ) ) ) )  =  ( (fld  gsumg  ( x  e.  B  |->  ( ( T `  x )  x.  ( X `  x ) ) ) )  +  ( ( T `  z )  x.  ( X `  z ) ) ) )
8716feqmptd 6249 . . . . . . . . . 10  |-  ( ph  ->  T  =  ( x  e.  A  |->  ( T `
 x ) ) )
8820feqmptd 6249 . . . . . . . . . 10  |-  ( ph  ->  X  =  ( x  e.  A  |->  ( X `
 x ) ) )
895, 74, 78, 87, 88offval2 6914 . . . . . . . . 9  |-  ( ph  ->  ( T  oF  x.  X )  =  ( x  e.  A  |->  ( ( T `  x )  x.  ( X `  x )
) ) )
9089reseq1d 5395 . . . . . . . 8  |-  ( ph  ->  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) )  =  ( ( x  e.  A  |->  ( ( T `  x )  x.  ( X `  x ) ) )  |`  ( B  u.  {
z } ) ) )
916resmptd 5452 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  ( ( T `
 x )  x.  ( X `  x
) ) )  |`  ( B  u.  { z } ) )  =  ( x  e.  ( B  u.  { z } )  |->  ( ( T `  x )  x.  ( X `  x ) ) ) )
9290, 91eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) )  =  ( x  e.  ( B  u.  {
z } )  |->  ( ( T `  x
)  x.  ( X `
 x ) ) ) )
9392oveq2d 6666 . . . . . 6  |-  ( ph  ->  (fld 
gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) ) )  =  (fld  gsumg  ( x  e.  ( B  u.  { z } )  |->  ( ( T `  x )  x.  ( X `  x ) ) ) ) )
9489reseq1d 5395 . . . . . . . . 9  |-  ( ph  ->  ( ( T  oF  x.  X )  |`  B )  =  ( ( x  e.  A  |->  ( ( T `  x )  x.  ( X `  x )
) )  |`  B ) )
957resmptd 5452 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( ( T `
 x )  x.  ( X `  x
) ) )  |`  B )  =  ( x  e.  B  |->  ( ( T `  x
)  x.  ( X `
 x ) ) ) )
9694, 95eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( T  oF  x.  X )  |`  B )  =  ( x  e.  B  |->  ( ( T `  x
)  x.  ( X `
 x ) ) ) )
9796oveq2d 6666 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  =  (fld 
gsumg  ( x  e.  B  |->  ( ( T `  x )  x.  ( X `  x )
) ) ) )
9897oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  +  ( ( T `  z )  x.  ( X `  z )
) )  =  ( (fld 
gsumg  ( x  e.  B  |->  ( ( T `  x )  x.  ( X `  x )
) ) )  +  ( ( T `  z )  x.  ( X `  z )
) ) )
9986, 93, 983eqtr4d 2666 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) ) )  =  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  +  ( ( T `  z )  x.  ( X `  z ) ) ) )
10099oveq1d 6665 . . . 4  |-  ( ph  ->  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) ) )  /  L )  =  ( ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  +  ( ( T `  z )  x.  ( X `  z ) ) )  /  L ) )
10152recnd 10068 . . . . . 6  |-  ( ph  ->  S  e.  CC )
10251rpne0d 11877 . . . . . 6  |-  ( ph  ->  S  =/=  0 )
10330, 101, 58, 102, 67dmdcand 10830 . . . . 5  |-  ( ph  ->  ( ( S  /  L )  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  =  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  L ) )
10458, 101, 58, 67divsubdird 10840 . . . . . . . 8  |-  ( ph  ->  ( ( L  -  S )  /  L
)  =  ( ( L  /  L )  -  ( S  /  L ) ) )
10550oveq1d 6665 . . . . . . . . . 10  |-  ( ph  ->  ( L  -  S
)  =  ( ( S  +  ( T `
 z ) )  -  S ) )
106101, 38pncan2d 10394 . . . . . . . . . 10  |-  ( ph  ->  ( ( S  +  ( T `  z ) )  -  S )  =  ( T `  z ) )
107105, 106eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( L  -  S
)  =  ( T `
 z ) )
108107oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( L  -  S )  /  L
)  =  ( ( T `  z )  /  L ) )
10958, 67dividd 10799 . . . . . . . . 9  |-  ( ph  ->  ( L  /  L
)  =  1 )
110109oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( L  /  L )  -  ( S  /  L ) )  =  ( 1  -  ( S  /  L
) ) )
111104, 108, 1103eqtr3rd 2665 . . . . . . 7  |-  ( ph  ->  ( 1  -  ( S  /  L ) )  =  ( ( T `
 z )  /  L ) )
112111oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
)  =  ( ( ( T `  z
)  /  L )  x.  ( X `  z ) ) )
11338, 41, 58, 67div23d 10838 . . . . . 6  |-  ( ph  ->  ( ( ( T `
 z )  x.  ( X `  z
) )  /  L
)  =  ( ( ( T `  z
)  /  L )  x.  ( X `  z ) ) )
114112, 113eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
)  =  ( ( ( T `  z
)  x.  ( X `
 z ) )  /  L ) )
115103, 114oveq12d 6668 . . . 4  |-  ( ph  ->  ( ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) )  =  ( ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  L )  +  ( ( ( T `  z )  x.  ( X `  z )
)  /  L ) ) )
11668, 100, 1153eqtr4d 2666 . . 3  |-  ( ph  ->  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) ) )  /  L )  =  ( ( ( S  /  L )  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) ) )
117 jensenlem.4 . . . . 5  |-  ( ph  ->  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  e.  D
)
11852, 57, 67redivcld 10853 . . . . . 6  |-  ( ph  ->  ( S  /  L
)  e.  RR )
11951rpge0d 11876 . . . . . . 7  |-  ( ph  ->  0  <_  S )
120 divge0 10892 . . . . . . 7  |-  ( ( ( S  e.  RR  /\  0  <_  S )  /\  ( L  e.  RR  /\  0  <  L ) )  ->  0  <_  ( S  /  L ) )
12152, 119, 57, 66, 120syl22anc 1327 . . . . . 6  |-  ( ph  ->  0  <_  ( S  /  L ) )
12258mulid1d 10057 . . . . . . . 8  |-  ( ph  ->  ( L  x.  1 )  =  L )
12365, 122breqtrrd 4681 . . . . . . 7  |-  ( ph  ->  S  <_  ( L  x.  1 ) )
124 1red 10055 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
125 ledivmul 10899 . . . . . . . 8  |-  ( ( S  e.  RR  /\  1  e.  RR  /\  ( L  e.  RR  /\  0  <  L ) )  -> 
( ( S  /  L )  <_  1  <->  S  <_  ( L  x.  1 ) ) )
12652, 124, 57, 66, 125syl112anc 1330 . . . . . . 7  |-  ( ph  ->  ( ( S  /  L )  <_  1  <->  S  <_  ( L  x.  1 ) ) )
127123, 126mpbird 247 . . . . . 6  |-  ( ph  ->  ( S  /  L
)  <_  1 )
128 0re 10040 . . . . . . 7  |-  0  e.  RR
129 1re 10039 . . . . . . 7  |-  1  e.  RR
130128, 129elicc2i 12239 . . . . . 6  |-  ( ( S  /  L )  e.  ( 0 [,] 1 )  <->  ( ( S  /  L )  e.  RR  /\  0  <_ 
( S  /  L
)  /\  ( S  /  L )  <_  1
) )
131118, 121, 127, 130syl3anbrc 1246 . . . . 5  |-  ( ph  ->  ( S  /  L
)  e.  ( 0 [,] 1 ) )
132117, 39, 1313jca 1242 . . . 4  |-  ( ph  ->  ( ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  e.  D  /\  ( X `  z
)  e.  D  /\  ( S  /  L
)  e.  ( 0 [,] 1 ) ) )
13321, 44cvxcl 24711 . . . 4  |-  ( (
ph  /\  ( (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  e.  D  /\  ( X `  z
)  e.  D  /\  ( S  /  L
)  e.  ( 0 [,] 1 ) ) )  ->  ( (
( S  /  L
)  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( X `  z ) ) )  e.  D )
134132, 133mpdan 702 . . 3  |-  ( ph  ->  ( ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) )  e.  D
)
135116, 134eqeltrd 2701 . 2  |-  ( ph  ->  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) ) )  /  L )  e.  D )
13643, 134ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( F `  (
( ( S  /  L )  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) ) )  e.  RR )
13743, 117ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  e.  RR )
138118, 137remulcld 10070 . . . . 5  |-  ( ph  ->  ( ( S  /  L )  x.  ( F `  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  e.  RR )
13943, 39ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( F `  ( X `  z )
)  e.  RR )
14055, 139remulcld 10070 . . . . . 6  |-  ( ph  ->  ( ( T `  z )  x.  ( F `  ( X `  z ) ) )  e.  RR )
141140, 57, 67redivcld 10853 . . . . 5  |-  ( ph  ->  ( ( ( T `
 z )  x.  ( F `  ( X `  z )
) )  /  L
)  e.  RR )
142138, 141readdcld 10069 . . . 4  |-  ( ph  ->  ( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( ( T `  z )  x.  ( F `  ( X `  z ) ) )  /  L
) )  e.  RR )
143 fco 6058 . . . . . . . . . . 11  |-  ( ( F : D --> RR  /\  X : A --> D )  ->  ( F  o.  X ) : A --> RR )
14443, 20, 143syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( F  o.  X
) : A --> RR )
14515, 19, 144, 5, 5, 23off 6912 . . . . . . . . 9  |-  ( ph  ->  ( T  oF  x.  ( F  o.  X ) ) : A --> RR )
146145, 7fssresd 6071 . . . . . . . 8  |-  ( ph  ->  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) : B --> RR )
147146, 9, 27fdmfifsupp 8285 . . . . . . . 8  |-  ( ph  ->  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) finSupp  0 )
1481, 4, 9, 13, 146, 147gsumsubgcl 18320 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  e.  RR )
149148, 52, 102redivcld 10853 . . . . . 6  |-  ( ph  ->  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S )  e.  RR )
150118, 149remulcld 10070 . . . . 5  |-  ( ph  ->  ( ( S  /  L )  x.  (
(fld  gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) )  e.  RR )
151 resubcl 10345 . . . . . . 7  |-  ( ( 1  e.  RR  /\  ( S  /  L
)  e.  RR )  ->  ( 1  -  ( S  /  L
) )  e.  RR )
152129, 118, 151sylancr 695 . . . . . 6  |-  ( ph  ->  ( 1  -  ( S  /  L ) )  e.  RR )
153152, 139remulcld 10070 . . . . 5  |-  ( ph  ->  ( ( 1  -  ( S  /  L
) )  x.  ( F `  ( X `  z ) ) )  e.  RR )
154150, 153readdcld 10069 . . . 4  |-  ( ph  ->  ( ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( F `  ( X `  z ) ) ) )  e.  RR )
155 oveq2 6658 . . . . . . . . . . . 12  |-  ( x  =  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  ->  (
t  x.  x )  =  ( t  x.  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )
156155oveq1d 6665 . . . . . . . . . . 11  |-  ( x  =  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  =  ( ( t  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  y
) ) )
157156fveq2d 6195 . . . . . . . . . 10  |-  ( x  =  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  ->  ( F `  ( (
t  x.  x )  +  ( ( 1  -  t )  x.  y ) ) )  =  ( F `  ( ( t  x.  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  y
) ) ) )
158 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  ->  ( F `  x )  =  ( F `  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )
159158oveq2d 6666 . . . . . . . . . . 11  |-  ( x  =  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  ->  (
t  x.  ( F `
 x ) )  =  ( t  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) ) )
160159oveq1d 6665 . . . . . . . . . 10  |-  ( x  =  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  ->  (
( t  x.  ( F `  x )
)  +  ( ( 1  -  t )  x.  ( F `  y ) ) )  =  ( ( t  x.  ( F `  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  y
) ) ) )
161157, 160breq12d 4666 . . . . . . . . 9  |-  ( x  =  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  ->  (
( F `  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )  <_  ( (
t  x.  ( F `
 x ) )  +  ( ( 1  -  t )  x.  ( F `  y
) ) )  <->  ( F `  ( ( t  x.  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  y
) ) )  <_ 
( ( t  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  y
) ) ) ) )
162161imbi2d 330 . . . . . . . 8  |-  ( x  =  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  ->  (
( ph  ->  ( F `
 ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) ) )  <_ 
( ( t  x.  ( F `  x
) )  +  ( ( 1  -  t
)  x.  ( F `
 y ) ) ) )  <->  ( ph  ->  ( F `  (
( t  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  y
) ) )  <_ 
( ( t  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  y
) ) ) ) ) )
163 oveq2 6658 . . . . . . . . . . . 12  |-  ( y  =  ( X `  z )  ->  (
( 1  -  t
)  x.  y )  =  ( ( 1  -  t )  x.  ( X `  z
) ) )
164163oveq2d 6666 . . . . . . . . . . 11  |-  ( y  =  ( X `  z )  ->  (
( t  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  y
) )  =  ( ( t  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  ( X `  z )
) ) )
165164fveq2d 6195 . . . . . . . . . 10  |-  ( y  =  ( X `  z )  ->  ( F `  ( (
t  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  y ) ) )  =  ( F `
 ( ( t  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  ( X `  z )
) ) ) )
166 fveq2 6191 . . . . . . . . . . . 12  |-  ( y  =  ( X `  z )  ->  ( F `  y )  =  ( F `  ( X `  z ) ) )
167166oveq2d 6666 . . . . . . . . . . 11  |-  ( y  =  ( X `  z )  ->  (
( 1  -  t
)  x.  ( F `
 y ) )  =  ( ( 1  -  t )  x.  ( F `  ( X `  z )
) ) )
168167oveq2d 6666 . . . . . . . . . 10  |-  ( y  =  ( X `  z )  ->  (
( t  x.  ( F `  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  y
) ) )  =  ( ( t  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  ( X `  z )
) ) ) )
169165, 168breq12d 4666 . . . . . . . . 9  |-  ( y  =  ( X `  z )  ->  (
( F `  (
( t  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  y
) ) )  <_ 
( ( t  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  y
) ) )  <->  ( F `  ( ( t  x.  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  ( X `  z )
) ) )  <_ 
( ( t  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  ( X `  z )
) ) ) ) )
170169imbi2d 330 . . . . . . . 8  |-  ( y  =  ( X `  z )  ->  (
( ph  ->  ( F `
 ( ( t  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  y
) ) )  <_ 
( ( t  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  y
) ) ) )  <-> 
( ph  ->  ( F `
 ( ( t  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  ( X `  z )
) ) )  <_ 
( ( t  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  ( X `  z )
) ) ) ) ) )
171 oveq1 6657 . . . . . . . . . . . 12  |-  ( t  =  ( S  /  L )  ->  (
t  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  =  ( ( S  /  L )  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )
172 oveq2 6658 . . . . . . . . . . . . 13  |-  ( t  =  ( S  /  L )  ->  (
1  -  t )  =  ( 1  -  ( S  /  L
) ) )
173172oveq1d 6665 . . . . . . . . . . . 12  |-  ( t  =  ( S  /  L )  ->  (
( 1  -  t
)  x.  ( X `
 z ) )  =  ( ( 1  -  ( S  /  L ) )  x.  ( X `  z
) ) )
174171, 173oveq12d 6668 . . . . . . . . . . 11  |-  ( t  =  ( S  /  L )  ->  (
( t  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  ( X `  z )
) )  =  ( ( ( S  /  L )  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) ) )
175174fveq2d 6195 . . . . . . . . . 10  |-  ( t  =  ( S  /  L )  ->  ( F `  ( (
t  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  ( X `  z ) ) ) )  =  ( F `
 ( ( ( S  /  L )  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) ) ) )
176 oveq1 6657 . . . . . . . . . . 11  |-  ( t  =  ( S  /  L )  ->  (
t  x.  ( F `
 ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  =  ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) ) )
177172oveq1d 6665 . . . . . . . . . . 11  |-  ( t  =  ( S  /  L )  ->  (
( 1  -  t
)  x.  ( F `
 ( X `  z ) ) )  =  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z )
) ) )
178176, 177oveq12d 6668 . . . . . . . . . 10  |-  ( t  =  ( S  /  L )  ->  (
( t  x.  ( F `  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  ( X `  z )
) ) )  =  ( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z )
) ) ) )
179175, 178breq12d 4666 . . . . . . . . 9  |-  ( t  =  ( S  /  L )  ->  (
( F `  (
( t  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  ( X `  z )
) ) )  <_ 
( ( t  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  ( X `  z )
) ) )  <->  ( F `  ( ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) ) )  <_ 
( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z )
) ) ) ) )
180179imbi2d 330 . . . . . . . 8  |-  ( t  =  ( S  /  L )  ->  (
( ph  ->  ( F `
 ( ( t  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  t )  x.  ( X `  z )
) ) )  <_ 
( ( t  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  t )  x.  ( F `  ( X `  z )
) ) ) )  <-> 
( ph  ->  ( F `
 ( ( ( S  /  L )  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) ) )  <_ 
( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z )
) ) ) ) ) )
18146expcom 451 . . . . . . . 8  |-  ( ( x  e.  D  /\  y  e.  D  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ph  ->  ( F `  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) ) )  <_  ( ( t  x.  ( F `  x ) )  +  ( ( 1  -  t )  x.  ( F `  y )
) ) ) )
182162, 170, 180, 181vtocl3ga 3276 . . . . . . 7  |-  ( ( ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S )  e.  D  /\  ( X `  z
)  e.  D  /\  ( S  /  L
)  e.  ( 0 [,] 1 ) )  ->  ( ph  ->  ( F `  ( ( ( S  /  L
)  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( X `  z ) ) ) )  <_  ( (
( S  /  L
)  x.  ( F `
 ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z )
) ) ) ) )
183117, 39, 131, 182syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ph  ->  ( F `  ( (
( S  /  L
)  x.  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( X `  z ) ) ) )  <_  ( (
( S  /  L
)  x.  ( F `
 ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z )
) ) ) ) )
184183pm2.43i 52 . . . . 5  |-  ( ph  ->  ( F `  (
( ( S  /  L )  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) ) )  <_ 
( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z )
) ) ) )
185111oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( 1  -  ( S  /  L
) )  x.  ( F `  ( X `  z ) ) )  =  ( ( ( T `  z )  /  L )  x.  ( F `  ( X `  z )
) ) )
186139recnd 10068 . . . . . . . 8  |-  ( ph  ->  ( F `  ( X `  z )
)  e.  CC )
18738, 186, 58, 67div23d 10838 . . . . . . 7  |-  ( ph  ->  ( ( ( T `
 z )  x.  ( F `  ( X `  z )
) )  /  L
)  =  ( ( ( T `  z
)  /  L )  x.  ( F `  ( X `  z ) ) ) )
188185, 187eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( ( 1  -  ( S  /  L
) )  x.  ( F `  ( X `  z ) ) )  =  ( ( ( T `  z )  x.  ( F `  ( X `  z ) ) )  /  L
) )
189188oveq2d 6666 . . . . 5  |-  ( ph  ->  ( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z )
) ) )  =  ( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( ( T `  z )  x.  ( F `  ( X `  z ) ) )  /  L
) ) )
190184, 189breqtrd 4679 . . . 4  |-  ( ph  ->  ( F `  (
( ( S  /  L )  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) ) )  <_ 
( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( ( T `  z )  x.  ( F `  ( X `  z ) ) )  /  L
) ) )
191187, 185eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( ( ( T `
 z )  x.  ( F `  ( X `  z )
) )  /  L
)  =  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z ) ) ) )
192191oveq2d 6666 . . . . 5  |-  ( ph  ->  ( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( ( T `  z )  x.  ( F `  ( X `  z ) ) )  /  L
) )  =  ( ( ( S  /  L )  x.  ( F `  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z )
) ) ) )
193 jensenlem.5 . . . . . . 7  |-  ( ph  ->  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  <_ 
( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) )
19452, 57, 60, 66divgt0d 10959 . . . . . . . 8  |-  ( ph  ->  0  <  ( S  /  L ) )
195 lemul2 10876 . . . . . . . 8  |-  ( ( ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  e.  RR  /\  ( (fld  gsumg  ( ( T  oF  x.  ( F  o.  X
) )  |`  B ) )  /  S )  e.  RR  /\  (
( S  /  L
)  e.  RR  /\  0  <  ( S  /  L ) ) )  ->  ( ( F `
 ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  <_ 
( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S )  <->  ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  <_  ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) ) ) )
196137, 149, 118, 194, 195syl112anc 1330 . . . . . . 7  |-  ( ph  ->  ( ( F `  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  <_ 
( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S )  <->  ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  <_  ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) ) ) )
197193, 196mpbid 222 . . . . . 6  |-  ( ph  ->  ( ( S  /  L )  x.  ( F `  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  <_  ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) ) )
198138, 150, 153, 197leadd1dd 10641 . . . . 5  |-  ( ph  ->  ( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( 1  -  ( S  /  L ) )  x.  ( F `  ( X `  z )
) ) )  <_ 
( ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( F `  ( X `  z ) ) ) ) )
199192, 198eqbrtrd 4675 . . . 4  |-  ( ph  ->  ( ( ( S  /  L )  x.  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) ) )  +  ( ( ( T `  z )  x.  ( F `  ( X `  z ) ) )  /  L
) )  <_  (
( ( S  /  L )  x.  (
(fld  gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( F `  ( X `  z ) ) ) ) )
200136, 142, 154, 190, 199letrd 10194 . . 3  |-  ( ph  ->  ( F `  (
( ( S  /  L )  x.  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) ) )  <_ 
( ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( F `  ( X `  z ) ) ) ) )
201116fveq2d 6195 . . 3  |-  ( ph  ->  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  { z } ) ) )  /  L ) )  =  ( F `  ( ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  X )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( X `  z )
) ) ) )
202148recnd 10068 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  e.  CC )
203140recnd 10068 . . . . 5  |-  ( ph  ->  ( ( T `  z )  x.  ( F `  ( X `  z ) ) )  e.  CC )
204202, 203, 58, 67divdird 10839 . . . 4  |-  ( ph  ->  ( ( (fld  gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  +  ( ( T `  z )  x.  ( F `  ( X `  z ) ) ) )  /  L )  =  ( ( (fld  gsumg  ( ( T  oF  x.  ( F  o.  X
) )  |`  B ) )  /  L )  +  ( ( ( T `  z )  x.  ( F `  ( X `  z ) ) )  /  L
) ) )
20517, 74sseldi 3601 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( T `  x )  e.  RR )
20643ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X `  x )  e.  D
)  ->  ( F `  ( X `  x
) )  e.  RR )
20778, 206syldan 487 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  ( X `  x ) )  e.  RR )
208205, 207remulcld 10070 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( T `  x
)  x.  ( F `
 ( X `  x ) ) )  e.  RR )
209208recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( T `  x
)  x.  ( F `
 ( X `  x ) ) )  e.  CC )
21073, 209syldan 487 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (
( T `  x
)  x.  ( F `
 ( X `  x ) ) )  e.  CC )
21184fveq2d 6195 . . . . . . . 8  |-  ( x  =  z  ->  ( F `  ( X `  x ) )  =  ( F `  ( X `  z )
) )
21283, 211oveq12d 6668 . . . . . . 7  |-  ( x  =  z  ->  (
( T `  x
)  x.  ( F `
 ( X `  x ) ) )  =  ( ( T `
 z )  x.  ( F `  ( X `  z )
) ) )
21369, 70, 72, 9, 210, 36, 47, 203, 212gsumunsn 18359 . . . . . 6  |-  ( ph  ->  (fld 
gsumg  ( x  e.  ( B  u.  { z } )  |->  ( ( T `  x )  x.  ( F `  ( X `  x ) ) ) ) )  =  ( (fld  gsumg  ( x  e.  B  |->  ( ( T `  x )  x.  ( F `  ( X `  x ) ) ) ) )  +  ( ( T `  z
)  x.  ( F `
 ( X `  z ) ) ) ) )
21443feqmptd 6249 . . . . . . . . . . 11  |-  ( ph  ->  F  =  ( y  e.  D  |->  ( F `
 y ) ) )
215 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  ( X `  x )  ->  ( F `  y )  =  ( F `  ( X `  x ) ) )
21678, 88, 214, 215fmptco 6396 . . . . . . . . . 10  |-  ( ph  ->  ( F  o.  X
)  =  ( x  e.  A  |->  ( F `
 ( X `  x ) ) ) )
2175, 74, 207, 87, 216offval2 6914 . . . . . . . . 9  |-  ( ph  ->  ( T  oF  x.  ( F  o.  X ) )  =  ( x  e.  A  |->  ( ( T `  x )  x.  ( F `  ( X `  x ) ) ) ) )
218217reseq1d 5395 . . . . . . . 8  |-  ( ph  ->  ( ( T  oF  x.  ( F  o.  X ) )  |`  ( B  u.  { z } ) )  =  ( ( x  e.  A  |->  ( ( T `
 x )  x.  ( F `  ( X `  x )
) ) )  |`  ( B  u.  { z } ) ) )
2196resmptd 5452 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  ( ( T `
 x )  x.  ( F `  ( X `  x )
) ) )  |`  ( B  u.  { z } ) )  =  ( x  e.  ( B  u.  { z } )  |->  ( ( T `  x )  x.  ( F `  ( X `  x ) ) ) ) )
220218, 219eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( T  oF  x.  ( F  o.  X ) )  |`  ( B  u.  { z } ) )  =  ( x  e.  ( B  u.  { z } )  |->  ( ( T `  x )  x.  ( F `  ( X `  x ) ) ) ) )
221220oveq2d 6666 . . . . . 6  |-  ( ph  ->  (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  ( B  u.  { z } ) ) )  =  (fld 
gsumg  ( x  e.  ( B  u.  { z } )  |->  ( ( T `  x )  x.  ( F `  ( X `  x ) ) ) ) ) )
222217reseq1d 5395 . . . . . . . . 9  |-  ( ph  ->  ( ( T  oF  x.  ( F  o.  X ) )  |`  B )  =  ( ( x  e.  A  |->  ( ( T `  x )  x.  ( F `  ( X `  x ) ) ) )  |`  B )
)
2237resmptd 5452 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( ( T `
 x )  x.  ( F `  ( X `  x )
) ) )  |`  B )  =  ( x  e.  B  |->  ( ( T `  x
)  x.  ( F `
 ( X `  x ) ) ) ) )
224222, 223eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( T  oF  x.  ( F  o.  X ) )  |`  B )  =  ( x  e.  B  |->  ( ( T `  x
)  x.  ( F `
 ( X `  x ) ) ) ) )
225224oveq2d 6666 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  =  (fld 
gsumg  ( x  e.  B  |->  ( ( T `  x )  x.  ( F `  ( X `  x ) ) ) ) ) )
226225oveq1d 6665 . . . . . 6  |-  ( ph  ->  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  +  ( ( T `  z )  x.  ( F `  ( X `  z ) ) ) )  =  ( (fld  gsumg  ( x  e.  B  |->  ( ( T `  x )  x.  ( F `  ( X `  x ) ) ) ) )  +  ( ( T `
 z )  x.  ( F `  ( X `  z )
) ) ) )
227213, 221, 2263eqtr4d 2666 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  ( B  u.  { z } ) ) )  =  ( (fld  gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  +  ( ( T `  z )  x.  ( F `  ( X `  z ) ) ) ) )
228227oveq1d 6665 . . . 4  |-  ( ph  ->  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  ( B  u.  { z } ) ) )  /  L )  =  ( ( (fld  gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  +  ( ( T `  z )  x.  ( F `  ( X `  z ) ) ) )  /  L ) )
229202, 101, 58, 102, 67dmdcand 10830 . . . . 5  |-  ( ph  ->  ( ( S  /  L )  x.  (
(fld  gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) )  =  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  L ) )
230229, 188oveq12d 6668 . . . 4  |-  ( ph  ->  ( ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( F `  ( X `  z ) ) ) )  =  ( ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  L )  +  ( ( ( T `  z )  x.  ( F `  ( X `  z ) ) )  /  L ) ) )
231204, 228, 2303eqtr4d 2666 . . 3  |-  ( ph  ->  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  ( B  u.  { z } ) ) )  /  L )  =  ( ( ( S  /  L )  x.  ( (fld 
gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  B ) )  /  S ) )  +  ( ( 1  -  ( S  /  L
) )  x.  ( F `  ( X `  z ) ) ) ) )
232200, 201, 2313brtr4d 4685 . 2  |-  ( ph  ->  ( F `  (
(fld  gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  { z } ) ) )  /  L ) )  <_  ( (fld  gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  ( B  u.  { z } ) ) )  /  L ) )
233135, 232jca 554 1  |-  ( ph  ->  ( ( (fld  gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) ) )  /  L )  e.  D  /\  ( F `  ( (fld  gsumg  ( ( T  oF  x.  X )  |`  ( B  u.  {
z } ) ) )  /  L ) )  <_  ( (fld  gsumg  ( ( T  oF  x.  ( F  o.  X ) )  |`  ( B  u.  { z } ) ) )  /  L ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653    |-> cmpt 4729    |` cres 5116    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   RR+crp 11832   [,)cico 12177   [,]cicc 12178    gsumg cgsu 16101  SubGrpcsubg 17588  CMndccmn 18193   Abelcabl 18194   Ringcrg 18547   DivRingcdr 18747  SubRingcsubrg 18776  ℂfldccnfld 19746  RRfldcrefld 19950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-subrg 18778  df-cnfld 19747  df-refld 19951
This theorem is referenced by:  jensen  24715
  Copyright terms: Public domain W3C validator