MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efabl Structured version   Visualization version   Unicode version

Theorem efabl 24296
Description: The image of a subgroup of the group  +, under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1  |-  F  =  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) )
efabl.2  |-  G  =  ( (mulGrp ` fld )s  ran  F )
efabl.3  |-  ( ph  ->  A  e.  CC )
efabl.4  |-  ( ph  ->  X  e.  (SubGrp ` fld )
)
Assertion
Ref Expression
efabl  |-  ( ph  ->  G  e.  Abel )
Distinct variable groups:    x, A    x, F    x, G    x, X    ph, x

Proof of Theorem efabl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2  |-  ( Base `  (flds  X ) )  =  (
Base `  (flds  X ) )
2 eqid 2622 . 2  |-  ( Base `  G )  =  (
Base `  G )
3 eqid 2622 . 2  |-  ( +g  `  (flds  X ) )  =  ( +g  `  (flds  X ) )
4 eqid 2622 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
5 simp1 1061 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  (flds  X ) )  /\  y  e.  ( Base `  (flds  X ) ) )  ->  ph )
6 simp2 1062 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  (flds  X ) )  /\  y  e.  ( Base `  (flds  X ) ) )  ->  x  e.  ( Base `  (flds  X ) ) )
7 efabl.4 . . . . . 6  |-  ( ph  ->  X  e.  (SubGrp ` fld )
)
8 eqid 2622 . . . . . . 7  |-  (flds  X )  =  (flds  X )
98subgbas 17598 . . . . . 6  |-  ( X  e.  (SubGrp ` fld )  ->  X  =  ( Base `  (flds  X )
) )
107, 9syl 17 . . . . 5  |-  ( ph  ->  X  =  ( Base `  (flds  X ) ) )
11103ad2ant1 1082 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  (flds  X ) )  /\  y  e.  ( Base `  (flds  X ) ) )  ->  X  =  ( Base `  (flds  X ) ) )
126, 11eleqtrrd 2704 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  (flds  X ) )  /\  y  e.  ( Base `  (flds  X ) ) )  ->  x  e.  X )
13 simp3 1063 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  (flds  X ) )  /\  y  e.  ( Base `  (flds  X ) ) )  -> 
y  e.  ( Base `  (flds  X ) ) )
1413, 11eleqtrrd 2704 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  (flds  X ) )  /\  y  e.  ( Base `  (flds  X ) ) )  -> 
y  e.  X )
15 efabl.3 . . . . . 6  |-  ( ph  ->  A  e.  CC )
1615, 7jca 554 . . . . 5  |-  ( ph  ->  ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
) )
17 efabl.1 . . . . . 6  |-  F  =  ( x  e.  X  |->  ( exp `  ( A  x.  x )
) )
1817efgh 24287 . . . . 5  |-  ( ( ( A  e.  CC  /\  X  e.  (SubGrp ` fld )
)  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  +  y ) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
1916, 18syl3an1 1359 . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  +  y ) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
20 cnfldadd 19751 . . . . . . . . 9  |-  +  =  ( +g  ` fld )
218, 20ressplusg 15993 . . . . . . . 8  |-  ( X  e.  (SubGrp ` fld )  ->  +  =  ( +g  `  (flds  X ) ) )
227, 21syl 17 . . . . . . 7  |-  ( ph  ->  +  =  ( +g  `  (flds  X ) ) )
23223ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  +  =  ( +g  `  (flds  X ) ) )
2423oveqd 6667 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( x  +  y )  =  ( x ( +g  `  (flds  X ) ) y ) )
2524fveq2d 6195 . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  +  y ) )  =  ( F `  ( x ( +g  `  (flds  X )
) y ) ) )
26 mptexg 6484 . . . . . . . . 9  |-  ( X  e.  (SubGrp ` fld )  ->  ( x  e.  X  |->  ( exp `  ( A  x.  x
) ) )  e. 
_V )
2717, 26syl5eqel 2705 . . . . . . . 8  |-  ( X  e.  (SubGrp ` fld )  ->  F  e. 
_V )
28 rnexg 7098 . . . . . . . 8  |-  ( F  e.  _V  ->  ran  F  e.  _V )
297, 27, 283syl 18 . . . . . . 7  |-  ( ph  ->  ran  F  e.  _V )
30 efabl.2 . . . . . . . 8  |-  G  =  ( (mulGrp ` fld )s  ran  F )
31 eqid 2622 . . . . . . . . 9  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
32 cnfldmul 19752 . . . . . . . . 9  |-  x.  =  ( .r ` fld )
3331, 32mgpplusg 18493 . . . . . . . 8  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
3430, 33ressplusg 15993 . . . . . . 7  |-  ( ran 
F  e.  _V  ->  x.  =  ( +g  `  G
) )
3529, 34syl 17 . . . . . 6  |-  ( ph  ->  x.  =  ( +g  `  G ) )
36353ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  x.  =  ( +g  `  G ) )
3736oveqd 6667 . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( ( F `  x )  x.  ( F `  y
) )  =  ( ( F `  x
) ( +g  `  G
) ( F `  y ) ) )
3819, 25, 373eqtr3d 2664 . . 3  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x ( +g  `  (flds  X ) ) y ) )  =  ( ( F `  x ) ( +g  `  G
) ( F `  y ) ) )
395, 12, 14, 38syl3anc 1326 . 2  |-  ( (
ph  /\  x  e.  ( Base `  (flds  X ) )  /\  y  e.  ( Base `  (flds  X ) ) )  -> 
( F `  (
x ( +g  `  (flds  X )
) y ) )  =  ( ( F `
 x ) ( +g  `  G ) ( F `  y
) ) )
40 fvex 6201 . . . . 5  |-  ( exp `  ( A  x.  x
) )  e.  _V
4140, 17fnmpti 6022 . . . 4  |-  F  Fn  X
42 dffn4 6121 . . . 4  |-  ( F  Fn  X  <->  F : X -onto-> ran  F )
4341, 42mpbi 220 . . 3  |-  F : X -onto-> ran  F
44 eqidd 2623 . . . 4  |-  ( ph  ->  F  =  F )
45 eff 14812 . . . . . . . 8  |-  exp : CC
--> CC
4645a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  exp : CC --> CC )
4715adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
48 cnfldbas 19750 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
4948subgss 17595 . . . . . . . . . 10  |-  ( X  e.  (SubGrp ` fld )  ->  X  C_  CC )
507, 49syl 17 . . . . . . . . 9  |-  ( ph  ->  X  C_  CC )
5150sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  CC )
5247, 51mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( A  x.  x )  e.  CC )
5346, 52ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( exp `  ( A  x.  x ) )  e.  CC )
5453ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. x  e.  X  ( exp `  ( A  x.  x ) )  e.  CC )
5517rnmptss 6392 . . . . 5  |-  ( A. x  e.  X  ( exp `  ( A  x.  x ) )  e.  CC  ->  ran  F  C_  CC )
5631, 48mgpbas 18495 . . . . . 6  |-  CC  =  ( Base `  (mulGrp ` fld ) )
5730, 56ressbas2 15931 . . . . 5  |-  ( ran 
F  C_  CC  ->  ran 
F  =  ( Base `  G ) )
5854, 55, 573syl 18 . . . 4  |-  ( ph  ->  ran  F  =  (
Base `  G )
)
5944, 10, 58foeq123d 6132 . . 3  |-  ( ph  ->  ( F : X -onto-> ran  F  <->  F : ( Base `  (flds  X ) ) -onto-> ( Base `  G ) ) )
6043, 59mpbii 223 . 2  |-  ( ph  ->  F : ( Base `  (flds  X ) ) -onto-> ( Base `  G ) )
61 cnring 19768 . . . 4  |-fld  e.  Ring
62 ringabl 18580 . . . 4  |-  (fld  e.  Ring  ->fld  e.  Abel )
6361, 62ax-mp 5 . . 3  |-fld  e.  Abel
648subgabl 18241 . . 3  |-  ( (fld  e. 
Abel  /\  X  e.  (SubGrp ` fld ) )  ->  (flds  X )  e.  Abel )
6563, 7, 64sylancr 695 . 2  |-  ( ph  ->  (flds  X )  e.  Abel )
661, 2, 3, 4, 39, 60, 65ghmabl 18238 1  |-  ( ph  ->  G  e.  Abel )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   ran crn 5115    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   CCcc 9934    + caddc 9939    x. cmul 9941   expce 14792   Basecbs 15857   ↾s cress 15858   +g cplusg 15941  SubGrpcsubg 17588   Abelcabl 18194  mulGrpcmgp 18489   Ringcrg 18547  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-cnfld 19747
This theorem is referenced by:  efsubm  24297  circgrp  24298
  Copyright terms: Public domain W3C validator