MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv Structured version   Visualization version   Unicode version

Theorem fldiv 12659
Description: Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.)
Assertion
Ref Expression
fldiv  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  =  ( |_
`  ( A  /  N ) ) )

Proof of Theorem fldiv
StepHypRef Expression
1 eqid 2622 . . . . . . . . 9  |-  ( |_
`  A )  =  ( |_ `  A
)
2 eqid 2622 . . . . . . . . 9  |-  ( A  -  ( |_ `  A ) )  =  ( A  -  ( |_ `  A ) )
31, 2intfrac2 12657 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  <_  ( A  -  ( |_ `  A ) )  /\  ( A  -  ( |_ `  A ) )  <  1  /\  A  =  ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) ) ) )
43simp3d 1075 . . . . . . 7  |-  ( A  e.  RR  ->  A  =  ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) ) )
54adantr 481 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  A  =  ( ( |_ `  A )  +  ( A  -  ( |_ `  A ) ) ) )
65oveq1d 6665 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( ( |_ `  A
)  +  ( A  -  ( |_ `  A ) ) )  /  N ) )
7 reflcl 12597 . . . . . . . 8  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
87recnd 10068 . . . . . . 7  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  CC )
98adantr 481 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  CC )
10 resubcl 10345 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  RR )  -> 
( A  -  ( |_ `  A ) )  e.  RR )
117, 10mpdan 702 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  ( |_ `  A ) )  e.  RR )
1211recnd 10068 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  -  ( |_ `  A ) )  e.  CC )
1312adantr 481 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  CC )
14 nncn 11028 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
15 nnne0 11053 . . . . . . . 8  |-  ( N  e.  NN  ->  N  =/=  0 )
1614, 15jca 554 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  e.  CC  /\  N  =/=  0 ) )
1716adantl 482 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( N  e.  CC  /\  N  =/=  0 ) )
18 divdir 10710 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  CC  /\  ( A  -  ( |_ `  A ) )  e.  CC  /\  ( N  e.  CC  /\  N  =/=  0 ) )  -> 
( ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) )  /  N )  =  ( ( ( |_ `  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
199, 13, 17, 18syl3anc 1326 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  +  ( A  -  ( |_ `  A ) ) )  /  N )  =  ( ( ( |_ `  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
206, 19eqtrd 2656 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( ( |_ `  A
)  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
21 flcl 12596 . . . . . 6  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  ZZ )
22 eqid 2622 . . . . . . . 8  |-  ( |_
`  ( ( |_
`  A )  /  N ) )  =  ( |_ `  (
( |_ `  A
)  /  N ) )
23 eqid 2622 . . . . . . . 8  |-  ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  =  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )
2422, 23intfracq 12658 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  /\  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N )  /\  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) ) )
2524simp3d 1075 . . . . . 6  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) )
2621, 25sylan 488 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) ) )
2726oveq1d 6665 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  =  ( ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
287adantr 481 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( |_ `  A
)  e.  RR )
29 nnre 11027 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
3029adantl 482 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  N  e.  RR )
3115adantl 482 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  N  =/=  0 )
3228, 30, 31redivcld 10853 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( |_ `  A )  /  N
)  e.  RR )
33 reflcl 12597 . . . . . . 7  |-  ( ( ( |_ `  A
)  /  N )  e.  RR  ->  ( |_ `  ( ( |_
`  A )  /  N ) )  e.  RR )
3432, 33syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  RR )
3534recnd 10068 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  CC )
3632, 34resubcld 10458 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  RR )
3736recnd 10068 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  e.  CC )
3811adantr 481 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  e.  RR )
3938, 30, 31redivcld 10853 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  RR )
4039recnd 10068 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  e.  CC )
4135, 37, 40addassd 10062 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( |_
`  ( ( |_
`  A )  /  N ) )  +  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  =  ( ( |_
`  ( ( |_
`  A )  /  N ) )  +  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) ) ) )
4220, 27, 413eqtrd 2660 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( A  /  N
)  =  ( ( |_ `  ( ( |_ `  A )  /  N ) )  +  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )
4342fveq2d 6195 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( |_ `  ( A  /  N ) )  =  ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) ) )
4424simp1d 1073 . . . . 5  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  0  <_  ( (
( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) ) )
4521, 44sylan 488 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  0  <_  ( (
( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) ) )
46 fracge0 12605 . . . . . 6  |-  ( A  e.  RR  ->  0  <_  ( A  -  ( |_ `  A ) ) )
4711, 46jca 554 . . . . 5  |-  ( A  e.  RR  ->  (
( A  -  ( |_ `  A ) )  e.  RR  /\  0  <_  ( A  -  ( |_ `  A ) ) ) )
48 nngt0 11049 . . . . . 6  |-  ( N  e.  NN  ->  0  <  N )
4929, 48jca 554 . . . . 5  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
50 divge0 10892 . . . . 5  |-  ( ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  0  <_  ( A  -  ( |_ `  A ) ) )  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
0  <_  ( ( A  -  ( |_ `  A ) )  /  N ) )
5147, 49, 50syl2an 494 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  0  <_  ( ( A  -  ( |_ `  A ) )  /  N ) )
5236, 39, 45, 51addge0d 10603 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  0  <_  ( (
( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) )
53 peano2rem 10348 . . . . . . . . . 10  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
5429, 53syl 17 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
5554, 29, 15redivcld 10853 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  -  1 )  /  N )  e.  RR )
56 nnrecre 11057 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  N )  e.  RR )
5755, 56jca 554 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  /  N
)  e.  RR  /\  ( 1  /  N
)  e.  RR ) )
5857adantl 482 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  /  N )  e.  RR  /\  ( 1  /  N
)  e.  RR ) )
5936, 39, 58jca31 557 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  e.  RR  /\  ( ( A  -  ( |_
`  A ) )  /  N )  e.  RR )  /\  (
( ( N  - 
1 )  /  N
)  e.  RR  /\  ( 1  /  N
)  e.  RR ) ) )
6024simp2d 1074 . . . . . . 7  |-  ( ( ( |_ `  A
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N ) )
6121, 60sylan 488 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N ) )
62 fraclt1 12603 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  ( |_ `  A ) )  <  1 )
6362adantr 481 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( A  -  ( |_ `  A ) )  <  1 )
64 1re 10039 . . . . . . . . 9  |-  1  e.  RR
65 ltdiv1 10887 . . . . . . . . 9  |-  ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
6664, 65mp3an2 1412 . . . . . . . 8  |-  ( ( ( A  -  ( |_ `  A ) )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
6711, 49, 66syl2an 494 . . . . . . 7  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  <  1  <->  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) ) )
6863, 67mpbid 222 . . . . . 6  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( A  -  ( |_ `  A ) )  /  N )  <  ( 1  /  N ) )
6961, 68jca 554 . . . . 5  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N )  /\  ( ( A  -  ( |_ `  A ) )  /  N )  <  ( 1  /  N ) ) )
70 leltadd 10512 . . . . 5  |-  ( ( ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  e.  RR  /\  ( ( A  -  ( |_ `  A ) )  /  N )  e.  RR )  /\  ( ( ( N  -  1 )  /  N )  e.  RR  /\  ( 1  /  N
)  e.  RR ) )  ->  ( (
( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  <_  ( ( N  -  1 )  /  N )  /\  (
( A  -  ( |_ `  A ) )  /  N )  < 
( 1  /  N
) )  ->  (
( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  < 
( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) ) ) )
7159, 69, 70sylc 65 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  <  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N
) ) )
72 ax-1cn 9994 . . . . . . . 8  |-  1  e.  CC
73 npcan 10290 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
7414, 72, 73sylancl 694 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  -  1 )  +  1 )  =  N )
7574oveq1d 6665 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  +  1 )  /  N )  =  ( N  /  N ) )
7654recnd 10068 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
77 divdir 10710 . . . . . . . 8  |-  ( ( ( N  -  1 )  e.  CC  /\  1  e.  CC  /\  ( N  e.  CC  /\  N  =/=  0 ) )  -> 
( ( ( N  -  1 )  +  1 )  /  N
)  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) ) )
7872, 77mp3an2 1412 . . . . . . 7  |-  ( ( ( N  -  1 )  e.  CC  /\  ( N  e.  CC  /\  N  =/=  0 ) )  ->  ( (
( N  -  1 )  +  1 )  /  N )  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) ) )
7976, 14, 15, 78syl12anc 1324 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  +  1 )  /  N )  =  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N
) ) )
8014, 15dividd 10799 . . . . . 6  |-  ( N  e.  NN  ->  ( N  /  N )  =  1 )
8175, 79, 803eqtr3d 2664 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  /  N
)  +  ( 1  /  N ) )  =  1 )
8281adantl 482 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( N  -  1 )  /  N )  +  ( 1  /  N ) )  =  1 )
8371, 82breqtrd 4679 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  <  1 )
8432flcld 12599 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ )
8536, 39readdcld 10069 . . . 4  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  e.  RR )
86 flbi2 12618 . . . 4  |-  ( ( ( |_ `  (
( |_ `  A
)  /  N ) )  e.  ZZ  /\  ( ( ( ( |_ `  A )  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N ) ) )  +  ( ( A  -  ( |_
`  A ) )  /  N ) )  e.  RR )  -> 
( ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) )  <->  ( 0  <_  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  /\  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  <  1 ) ) )
8784, 85, 86syl2anc 693 . . 3  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( ( |_ `  ( ( |_ `  ( ( |_ `  A )  /  N
) )  +  ( ( ( ( |_
`  A )  /  N )  -  ( |_ `  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) )  <->  ( 0  <_  ( ( ( ( |_ `  A
)  /  N )  -  ( |_ `  ( ( |_ `  A )  /  N
) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  /\  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) )  <  1 ) ) )
8852, 83, 87mpbir2and 957 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  (
( |_ `  A
)  /  N ) )  +  ( ( ( ( |_ `  A )  /  N
)  -  ( |_
`  ( ( |_
`  A )  /  N ) ) )  +  ( ( A  -  ( |_ `  A ) )  /  N ) ) ) )  =  ( |_
`  ( ( |_
`  A )  /  N ) ) )
8943, 88eqtr2d 2657 1  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  N ) )  =  ( |_
`  ( A  /  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   |_cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fl 12593
This theorem is referenced by:  fldiv2  12660  modmulnn  12688  digit2  12997  bitsp1  15153
  Copyright terms: Public domain W3C validator