MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intfracq Structured version   Visualization version   Unicode version

Theorem intfracq 12658
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 12657. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1  |-  Z  =  ( |_ `  ( M  /  N ) )
intfracq.2  |-  F  =  ( ( M  /  N )  -  Z
)
Assertion
Ref Expression
intfracq  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M  /  N
)  =  ( Z  +  F ) ) )

Proof of Theorem intfracq
StepHypRef Expression
1 zre 11381 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
21adantr 481 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  RR )
3 nnre 11027 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
43adantl 482 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  RR )
5 nnne0 11053 . . . . . 6  |-  ( N  e.  NN  ->  N  =/=  0 )
65adantl 482 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  =/=  0 )
72, 4, 6redivcld 10853 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  RR )
8 intfracq.1 . . . . 5  |-  Z  =  ( |_ `  ( M  /  N ) )
9 intfracq.2 . . . . 5  |-  F  =  ( ( M  /  N )  -  Z
)
108, 9intfrac2 12657 . . . 4  |-  ( ( M  /  N )  e.  RR  ->  (
0  <_  F  /\  F  <  1  /\  ( M  /  N )  =  ( Z  +  F
) ) )
117, 10syl 17 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <  1  /\  ( M  /  N
)  =  ( Z  +  F ) ) )
1211simp1d 1073 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <_  F )
13 fraclt1 12603 . . . . . . 7  |-  ( ( M  /  N )  e.  RR  ->  (
( M  /  N
)  -  ( |_
`  ( M  /  N ) ) )  <  1 )
147, 13syl 17 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )  <  1 )
158oveq2i 6661 . . . . . . . 8  |-  ( ( M  /  N )  -  Z )  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )
169, 15eqtri 2644 . . . . . . 7  |-  F  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )
1716a1i 11 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N
) ) ) )
18 nncn 11028 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
1918, 5dividd 10799 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  /  N )  =  1 )
2019adantl 482 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  /  N
)  =  1 )
2114, 17, 203brtr4d 4685 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  <  ( N  /  N ) )
22 reflcl 12597 . . . . . . . . . 10  |-  ( ( M  /  N )  e.  RR  ->  ( |_ `  ( M  /  N ) )  e.  RR )
237, 22syl 17 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  RR )
248, 23syl5eqel 2705 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  RR )
257, 24resubcld 10458 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  Z
)  e.  RR )
269, 25syl5eqel 2705 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  e.  RR )
27 nngt0 11049 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  N )
283, 27jca 554 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
2928adantl 482 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  e.  RR  /\  0  <  N ) )
30 ltmuldiv2 10897 . . . . . 6  |-  ( ( F  e.  RR  /\  N  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( N  x.  F )  <  N  <->  F  <  ( N  /  N ) ) )
3126, 4, 29, 30syl3anc 1326 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <  N  <->  F  <  ( N  /  N ) ) )
3221, 31mpbird 247 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  <  N )
339oveq2i 6661 . . . . . . 7  |-  ( N  x.  F )  =  ( N  x.  (
( M  /  N
)  -  Z ) )
3418adantl 482 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
357recnd 10068 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
367flcld 12599 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  ZZ )
378, 36syl5eqel 2705 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  ZZ )
3837zcnd 11483 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  CC )
3934, 35, 38subdid 10486 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  (
( M  /  N
)  -  Z ) )  =  ( ( N  x.  ( M  /  N ) )  -  ( N  x.  Z ) ) )
4033, 39syl5eq 2668 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  =  ( ( N  x.  ( M  /  N ) )  -  ( N  x.  Z ) ) )
41 zcn 11382 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
4241adantr 481 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
4342, 34, 6divcan2d 10803 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
44 simpl 473 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  ZZ )
4543, 44eqeltrd 2701 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  e.  ZZ )
46 nnz 11399 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
4746adantl 482 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
4847, 37zmulcld 11488 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  Z
)  e.  ZZ )
4945, 48zsubcld 11487 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  ( M  /  N
) )  -  ( N  x.  Z )
)  e.  ZZ )
5040, 49eqeltrd 2701 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  e.  ZZ )
51 zltlem1 11430 . . . . 5  |-  ( ( ( N  x.  F
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  F )  <  N  <->  ( N  x.  F )  <_  ( N  - 
1 ) ) )
5250, 47, 51syl2anc 693 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <  N  <->  ( N  x.  F )  <_  ( N  - 
1 ) ) )
5332, 52mpbid 222 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  <_  ( N  -  1 ) )
54 peano2rem 10348 . . . . . 6  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
553, 54syl 17 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
5655adantl 482 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  -  1 )  e.  RR )
57 lemuldiv2 10904 . . . 4  |-  ( ( F  e.  RR  /\  ( N  -  1
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( ( N  x.  F )  <_  ( N  -  1 )  <->  F  <_  ( ( N  -  1 )  /  N ) ) )
5826, 56, 29, 57syl3anc 1326 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <_  ( N  -  1 )  <-> 
F  <_  ( ( N  -  1 )  /  N ) ) )
5953, 58mpbid 222 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  <_  ( ( N  -  1 )  /  N ) )
6011simp3d 1075 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  =  ( Z  +  F ) )
6112, 59, 603jca 1242 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M  /  N
)  =  ( Z  +  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   |_cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fl 12593
This theorem is referenced by:  fldiv  12659
  Copyright terms: Public domain W3C validator