| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem6 | Structured version Visualization version Unicode version | ||
| Description: Lemma 6 for gausslemma2d 25099. (Contributed by AV, 16-Jun-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2d.p |
|
| gausslemma2d.h |
|
| gausslemma2d.r |
|
| gausslemma2d.m |
|
| gausslemma2d.n |
|
| Ref | Expression |
|---|---|
| gausslemma2dlem6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p |
. . . 4
| |
| 2 | gausslemma2d.h |
. . . 4
| |
| 3 | gausslemma2d.r |
. . . 4
| |
| 4 | gausslemma2d.m |
. . . 4
| |
| 5 | 1, 2, 3, 4 | gausslemma2dlem4 25094 |
. . 3
|
| 6 | 5 | oveq1d 6665 |
. 2
|
| 7 | fzfid 12772 |
. . . 4
| |
| 8 | 1, 2, 3, 4 | gausslemma2dlem2 25092 |
. . . . . 6
|
| 9 | 8 | adantr 481 |
. . . . 5
|
| 10 | rspa 2930 |
. . . . . . . 8
| |
| 11 | 10 | expcom 451 |
. . . . . . 7
|
| 12 | 11 | adantl 482 |
. . . . . 6
|
| 13 | elfzelz 12342 |
. . . . . . . . 9
| |
| 14 | 2z 11409 |
. . . . . . . . . 10
| |
| 15 | 14 | a1i 11 |
. . . . . . . . 9
|
| 16 | 13, 15 | zmulcld 11488 |
. . . . . . . 8
|
| 17 | 16 | adantl 482 |
. . . . . . 7
|
| 18 | eleq1 2689 |
. . . . . . 7
| |
| 19 | 17, 18 | syl5ibrcom 237 |
. . . . . 6
|
| 20 | 12, 19 | syld 47 |
. . . . 5
|
| 21 | 9, 20 | mpd 15 |
. . . 4
|
| 22 | 7, 21 | fprodzcl 14684 |
. . 3
|
| 23 | fzfid 12772 |
. . . . 5
| |
| 24 | 1, 2, 3, 4 | gausslemma2dlem3 25093 |
. . . . . . 7
|
| 25 | 24 | adantr 481 |
. . . . . 6
|
| 26 | rspa 2930 |
. . . . . . . . 9
| |
| 27 | 26 | expcom 451 |
. . . . . . . 8
|
| 28 | 27 | adantl 482 |
. . . . . . 7
|
| 29 | 1 | gausslemma2dlem0a 25081 |
. . . . . . . . . 10
|
| 30 | 29 | nnzd 11481 |
. . . . . . . . 9
|
| 31 | elfzelz 12342 |
. . . . . . . . . 10
| |
| 32 | 14 | a1i 11 |
. . . . . . . . . 10
|
| 33 | 31, 32 | zmulcld 11488 |
. . . . . . . . 9
|
| 34 | zsubcl 11419 |
. . . . . . . . 9
| |
| 35 | 30, 33, 34 | syl2an 494 |
. . . . . . . 8
|
| 36 | eleq1 2689 |
. . . . . . . 8
| |
| 37 | 35, 36 | syl5ibrcom 237 |
. . . . . . 7
|
| 38 | 28, 37 | syld 47 |
. . . . . 6
|
| 39 | 25, 38 | mpd 15 |
. . . . 5
|
| 40 | 23, 39 | fprodzcl 14684 |
. . . 4
|
| 41 | 40 | zred 11482 |
. . 3
|
| 42 | nnoddn2prm 15516 |
. . . 4
| |
| 43 | nnrp 11842 |
. . . . 5
| |
| 44 | 43 | adantr 481 |
. . . 4
|
| 45 | 1, 42, 44 | 3syl 18 |
. . 3
|
| 46 | modmulmodr 12736 |
. . . 4
| |
| 47 | 46 | eqcomd 2628 |
. . 3
|
| 48 | 22, 41, 45, 47 | syl3anc 1326 |
. 2
|
| 49 | gausslemma2d.n |
. . . . . 6
| |
| 50 | 1, 2, 3, 4, 49 | gausslemma2dlem5 25096 |
. . . . 5
|
| 51 | 50 | oveq2d 6666 |
. . . 4
|
| 52 | 51 | oveq1d 6665 |
. . 3
|
| 53 | neg1rr 11125 |
. . . . . . 7
| |
| 54 | 53 | a1i 11 |
. . . . . 6
|
| 55 | 1, 4, 2, 49 | gausslemma2dlem0h 25088 |
. . . . . 6
|
| 56 | 54, 55 | reexpcld 13025 |
. . . . 5
|
| 57 | 31 | adantl 482 |
. . . . . . . 8
|
| 58 | 14 | a1i 11 |
. . . . . . . 8
|
| 59 | 57, 58 | zmulcld 11488 |
. . . . . . 7
|
| 60 | 23, 59 | fprodzcl 14684 |
. . . . . 6
|
| 61 | 60 | zred 11482 |
. . . . 5
|
| 62 | 56, 61 | remulcld 10070 |
. . . 4
|
| 63 | modmulmodr 12736 |
. . . 4
| |
| 64 | 22, 62, 45, 63 | syl3anc 1326 |
. . 3
|
| 65 | 8 | prodeq2d 14652 |
. . . . . . . 8
|
| 66 | 65 | oveq1d 6665 |
. . . . . . 7
|
| 67 | fzfid 12772 |
. . . . . . . . 9
| |
| 68 | elfzelz 12342 |
. . . . . . . . . . 11
| |
| 69 | 68 | zcnd 11483 |
. . . . . . . . . 10
|
| 70 | 69 | adantl 482 |
. . . . . . . . 9
|
| 71 | 2cn 11091 |
. . . . . . . . . 10
| |
| 72 | 71 | a1i 11 |
. . . . . . . . 9
|
| 73 | 67, 70, 72 | fprodmul 14690 |
. . . . . . . 8
|
| 74 | 1, 4 | gausslemma2dlem0d 25084 |
. . . . . . . . . . . 12
|
| 75 | 74 | nn0red 11352 |
. . . . . . . . . . 11
|
| 76 | 75 | ltp1d 10954 |
. . . . . . . . . 10
|
| 77 | fzdisj 12368 |
. . . . . . . . . 10
| |
| 78 | 76, 77 | syl 17 |
. . . . . . . . 9
|
| 79 | 1zzd 11408 |
. . . . . . . . . . 11
| |
| 80 | nn0pzuz 11745 |
. . . . . . . . . . 11
| |
| 81 | 74, 79, 80 | syl2anc 693 |
. . . . . . . . . 10
|
| 82 | 74 | nn0zd 11480 |
. . . . . . . . . . 11
|
| 83 | 1, 2 | gausslemma2dlem0b 25082 |
. . . . . . . . . . . 12
|
| 84 | 83 | nnzd 11481 |
. . . . . . . . . . 11
|
| 85 | 1, 4, 2 | gausslemma2dlem0g 25087 |
. . . . . . . . . . 11
|
| 86 | eluz2 11693 |
. . . . . . . . . . 11
| |
| 87 | 82, 84, 85, 86 | syl3anbrc 1246 |
. . . . . . . . . 10
|
| 88 | fzsplit2 12366 |
. . . . . . . . . 10
| |
| 89 | 81, 87, 88 | syl2anc 693 |
. . . . . . . . 9
|
| 90 | 14 | a1i 11 |
. . . . . . . . . . . 12
|
| 91 | 68, 90 | zmulcld 11488 |
. . . . . . . . . . 11
|
| 92 | 91 | adantl 482 |
. . . . . . . . . 10
|
| 93 | 92 | zcnd 11483 |
. . . . . . . . 9
|
| 94 | 78, 89, 67, 93 | fprodsplit 14696 |
. . . . . . . 8
|
| 95 | nnnn0 11299 |
. . . . . . . . . . . . . . 15
| |
| 96 | 95 | anim1i 592 |
. . . . . . . . . . . . . 14
|
| 97 | 42, 96 | syl 17 |
. . . . . . . . . . . . 13
|
| 98 | nn0oddm1d2 15101 |
. . . . . . . . . . . . . . 15
| |
| 99 | 98 | biimpa 501 |
. . . . . . . . . . . . . 14
|
| 100 | 2, 99 | syl5eqel 2705 |
. . . . . . . . . . . . 13
|
| 101 | 1, 97, 100 | 3syl 18 |
. . . . . . . . . . . 12
|
| 102 | fprodfac 14703 |
. . . . . . . . . . . 12
| |
| 103 | 101, 102 | syl 17 |
. . . . . . . . . . 11
|
| 104 | 103 | eqcomd 2628 |
. . . . . . . . . 10
|
| 105 | fzfi 12771 |
. . . . . . . . . . . 12
| |
| 106 | 105, 71 | pm3.2i 471 |
. . . . . . . . . . 11
|
| 107 | fprodconst 14708 |
. . . . . . . . . . 11
| |
| 108 | 106, 107 | mp1i 13 |
. . . . . . . . . 10
|
| 109 | 104, 108 | oveq12d 6668 |
. . . . . . . . 9
|
| 110 | hashfz1 13134 |
. . . . . . . . . . . 12
| |
| 111 | 101, 110 | syl 17 |
. . . . . . . . . . 11
|
| 112 | 111 | oveq2d 6666 |
. . . . . . . . . 10
|
| 113 | 112 | oveq2d 6666 |
. . . . . . . . 9
|
| 114 | 101 | faccld 13071 |
. . . . . . . . . . 11
|
| 115 | 114 | nncnd 11036 |
. . . . . . . . . 10
|
| 116 | 2nn0 11309 |
. . . . . . . . . . 11
| |
| 117 | nn0expcl 12874 |
. . . . . . . . . . . 12
| |
| 118 | 117 | nn0cnd 11353 |
. . . . . . . . . . 11
|
| 119 | 116, 101, 118 | sylancr 695 |
. . . . . . . . . 10
|
| 120 | 115, 119 | mulcomd 10061 |
. . . . . . . . 9
|
| 121 | 109, 113, 120 | 3eqtrd 2660 |
. . . . . . . 8
|
| 122 | 73, 94, 121 | 3eqtr3d 2664 |
. . . . . . 7
|
| 123 | 66, 122 | eqtrd 2656 |
. . . . . 6
|
| 124 | 123 | oveq2d 6666 |
. . . . 5
|
| 125 | 22 | zcnd 11483 |
. . . . . 6
|
| 126 | 56 | recnd 10068 |
. . . . . 6
|
| 127 | 60 | zcnd 11483 |
. . . . . 6
|
| 128 | 125, 126, 127 | mul12d 10245 |
. . . . 5
|
| 129 | 126, 119, 115 | mulassd 10063 |
. . . . 5
|
| 130 | 124, 128, 129 | 3eqtr4d 2666 |
. . . 4
|
| 131 | 130 | oveq1d 6665 |
. . 3
|
| 132 | 52, 64, 131 | 3eqtrd 2660 |
. 2
|
| 133 | 6, 48, 132 | 3eqtrd 2660 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ioo 12179 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-fac 13061 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-prod 14636 df-dvds 14984 df-prm 15386 |
| This theorem is referenced by: gausslemma2dlem7 25098 |
| Copyright terms: Public domain | W3C validator |