MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem3 Structured version   Visualization version   Unicode version

Theorem gausslemma2dlem3 25093
Description: Lemma 3 for gausslemma2d 25099. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
Assertion
Ref Expression
gausslemma2dlem3  |-  ( ph  ->  A. k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  =  ( P  -  ( k  x.  2 ) ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M   
x, k
Allowed substitution hints:    P( k)    R( x)    M( k)

Proof of Theorem gausslemma2dlem3
StepHypRef Expression
1 gausslemma2d.r . . . 4  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
21a1i 11 . . 3  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  R  =  ( x  e.  ( 1 ... H
)  |->  if ( ( x  x.  2 )  <  ( P  / 
2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2
) ) ) ) )
3 oveq1 6657 . . . . . . 7  |-  ( x  =  k  ->  (
x  x.  2 )  =  ( k  x.  2 ) )
43breq1d 4663 . . . . . 6  |-  ( x  =  k  ->  (
( x  x.  2 )  <  ( P  /  2 )  <->  ( k  x.  2 )  <  ( P  /  2 ) ) )
53oveq2d 6666 . . . . . 6  |-  ( x  =  k  ->  ( P  -  ( x  x.  2 ) )  =  ( P  -  (
k  x.  2 ) ) )
64, 3, 5ifbieq12d 4113 . . . . 5  |-  ( x  =  k  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
76adantl 482 . . . 4  |-  ( ( ( ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
8 gausslemma2d.p . . . . . . . 8  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
98gausslemma2dlem0a 25081 . . . . . . 7  |-  ( ph  ->  P  e.  NN )
10 elfz2 12333 . . . . . . . . . 10  |-  ( k  e.  ( ( M  +  1 ) ... H )  <->  ( (
( M  +  1 )  e.  ZZ  /\  H  e.  ZZ  /\  k  e.  ZZ )  /\  (
( M  +  1 )  <_  k  /\  k  <_  H ) ) )
11 gausslemma2d.m . . . . . . . . . . . . . . . . 17  |-  M  =  ( |_ `  ( P  /  4 ) )
1211oveq1i 6660 . . . . . . . . . . . . . . . 16  |-  ( M  +  1 )  =  ( ( |_ `  ( P  /  4
) )  +  1 )
1312breq1i 4660 . . . . . . . . . . . . . . 15  |-  ( ( M  +  1 )  <_  k  <->  ( ( |_ `  ( P  / 
4 ) )  +  1 )  <_  k
)
14 nnre 11027 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  NN  ->  P  e.  RR )
15 4re 11097 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  4  e.  RR
1615a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  NN  ->  4  e.  RR )
17 4ne0 11117 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  4  =/=  0
1817a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  NN  ->  4  =/=  0 )
1914, 16, 18redivcld 10853 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  NN  ->  ( P  /  4 )  e.  RR )
2019adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( P  /  4
)  e.  RR )
21 fllelt 12598 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  /  4 )  e.  RR  ->  (
( |_ `  ( P  /  4 ) )  <_  ( P  / 
4 )  /\  ( P  /  4 )  < 
( ( |_ `  ( P  /  4
) )  +  1 ) ) )
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( |_ `  ( P  /  4
) )  <_  ( P  /  4 )  /\  ( P  /  4
)  <  ( ( |_ `  ( P  / 
4 ) )  +  1 ) ) )
2319flcld 12599 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  e.  NN  ->  ( |_ `  ( P  / 
4 ) )  e.  ZZ )
2423zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  NN  ->  ( |_ `  ( P  / 
4 ) )  e.  RR )
25 peano2re 10209 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( |_ `  ( P  /  4 ) )  e.  RR  ->  (
( |_ `  ( P  /  4 ) )  +  1 )  e.  RR )
2624, 25syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( P  e.  NN  ->  (
( |_ `  ( P  /  4 ) )  +  1 )  e.  RR )
2726adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( |_ `  ( P  /  4
) )  +  1 )  e.  RR )
28 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  ZZ  ->  k  e.  RR )
2928adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  k  e.  RR )
30 ltleletr 10130 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( P  /  4
)  e.  RR  /\  ( ( |_ `  ( P  /  4
) )  +  1 )  e.  RR  /\  k  e.  RR )  ->  ( ( ( P  /  4 )  < 
( ( |_ `  ( P  /  4
) )  +  1 )  /\  ( ( |_ `  ( P  /  4 ) )  +  1 )  <_ 
k )  ->  ( P  /  4 )  <_ 
k ) )
3120, 27, 29, 30syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( P  /  4 )  < 
( ( |_ `  ( P  /  4
) )  +  1 )  /\  ( ( |_ `  ( P  /  4 ) )  +  1 )  <_ 
k )  ->  ( P  /  4 )  <_ 
k ) )
3231expd 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( P  / 
4 )  <  (
( |_ `  ( P  /  4 ) )  +  1 )  -> 
( ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  k  ->  ( P  /  4
)  <_  k )
) )
3332adantld 483 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( |_
`  ( P  / 
4 ) )  <_ 
( P  /  4
)  /\  ( P  /  4 )  < 
( ( |_ `  ( P  /  4
) )  +  1 ) )  ->  (
( ( |_ `  ( P  /  4
) )  +  1 )  <_  k  ->  ( P  /  4 )  <_  k ) ) )
3422, 33mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  k  ->  ( P  /  4
)  <_  k )
)
3534imp 445 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( k  e.  ZZ  /\  P  e.  NN )  /\  ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  k
)  ->  ( P  /  4 )  <_ 
k )
3614rehalfcld 11279 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  NN  ->  ( P  /  2 )  e.  RR )
3736adantl 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( P  /  2
)  e.  RR )
38 2re 11090 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2  e.  RR
3938a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ZZ  ->  2  e.  RR )
4028, 39remulcld 10070 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ZZ  ->  (
k  x.  2 )  e.  RR )
4140adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( k  x.  2 )  e.  RR )
42 2pos 11112 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  <  2
4338, 42pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  e.  RR  /\  0  <  2 )
4443a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( 2  e.  RR  /\  0  <  2 ) )
45 lediv1 10888 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  /  2
)  e.  RR  /\  ( k  x.  2 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( ( P  /  2 )  <_ 
( k  x.  2 )  <->  ( ( P  /  2 )  / 
2 )  <_  (
( k  x.  2 )  /  2 ) ) )
4637, 41, 44, 45syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( P  / 
2 )  <_  (
k  x.  2 )  <-> 
( ( P  / 
2 )  /  2
)  <_  ( (
k  x.  2 )  /  2 ) ) )
47 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  NN  ->  P  e.  CC )
48 2cnne0 11242 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 2  e.  CC  /\  2  =/=  0 )
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  NN  ->  (
2  e.  CC  /\  2  =/=  0 ) )
50 divdiv1 10736 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( P  / 
2 )  /  2
)  =  ( P  /  ( 2  x.  2 ) ) )
5147, 49, 49, 50syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  NN  ->  (
( P  /  2
)  /  2 )  =  ( P  / 
( 2  x.  2 ) ) )
52 2t2e4 11177 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  x.  2 )  =  4
5352oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  /  ( 2  x.  2 ) )  =  ( P  /  4
)
5451, 53syl6eq 2672 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  e.  NN  ->  (
( P  /  2
)  /  2 )  =  ( P  / 
4 ) )
55 zcn 11382 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ZZ  ->  k  e.  CC )
56 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ZZ  ->  2  e.  CC )
57 2ne0 11113 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  =/=  0
5857a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ZZ  ->  2  =/=  0 )
5955, 56, 58divcan4d 10807 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ZZ  ->  (
( k  x.  2 )  /  2 )  =  k )
6054, 59breqan12rd 4670 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( P  /  2 )  / 
2 )  <_  (
( k  x.  2 )  /  2 )  <-> 
( P  /  4
)  <_  k )
)
6146, 60bitrd 268 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  ZZ  /\  P  e.  NN )  ->  ( ( P  / 
2 )  <_  (
k  x.  2 )  <-> 
( P  /  4
)  <_  k )
)
6261adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( k  e.  ZZ  /\  P  e.  NN )  /\  ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  k
)  ->  ( ( P  /  2 )  <_ 
( k  x.  2 )  <->  ( P  / 
4 )  <_  k
) )
6335, 62mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  ZZ  /\  P  e.  NN )  /\  ( ( |_
`  ( P  / 
4 ) )  +  1 )  <_  k
)  ->  ( P  /  2 )  <_ 
( k  x.  2 ) )
6463exp31 630 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ZZ  ->  ( P  e.  NN  ->  ( ( ( |_ `  ( P  /  4
) )  +  1 )  <_  k  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) ) )
6564com23 86 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  (
( ( |_ `  ( P  /  4
) )  +  1 )  <_  k  ->  ( P  e.  NN  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) ) )
6613, 65syl5bi 232 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
( M  +  1 )  <_  k  ->  ( P  e.  NN  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) ) )
67663ad2ant3 1084 . . . . . . . . . . . . 13  |-  ( ( ( M  +  1 )  e.  ZZ  /\  H  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  +  1 )  <_  k  ->  ( P  e.  NN  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) ) )
6867com12 32 . . . . . . . . . . . 12  |-  ( ( M  +  1 )  <_  k  ->  (
( ( M  + 
1 )  e.  ZZ  /\  H  e.  ZZ  /\  k  e.  ZZ )  ->  ( P  e.  NN  ->  ( P  /  2
)  <_  ( k  x.  2 ) ) ) )
6968adantr 481 . . . . . . . . . . 11  |-  ( ( ( M  +  1 )  <_  k  /\  k  <_  H )  -> 
( ( ( M  +  1 )  e.  ZZ  /\  H  e.  ZZ  /\  k  e.  ZZ )  ->  ( P  e.  NN  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) ) )
7069impcom 446 . . . . . . . . . 10  |-  ( ( ( ( M  + 
1 )  e.  ZZ  /\  H  e.  ZZ  /\  k  e.  ZZ )  /\  ( ( M  + 
1 )  <_  k  /\  k  <_  H ) )  ->  ( P  e.  NN  ->  ( P  /  2 )  <_ 
( k  x.  2 ) ) )
7110, 70sylbi 207 . . . . . . . . 9  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  ( P  e.  NN  ->  ( P  /  2 )  <_  ( k  x.  2 ) ) )
7271impcom 446 . . . . . . . 8  |-  ( ( P  e.  NN  /\  k  e.  ( ( M  +  1 ) ... H ) )  ->  ( P  / 
2 )  <_  (
k  x.  2 ) )
73 elfzelz 12342 . . . . . . . . . . 11  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  k  e.  ZZ )
7473zred 11482 . . . . . . . . . 10  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  k  e.  RR )
7538a1i 11 . . . . . . . . . 10  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  2  e.  RR )
7674, 75remulcld 10070 . . . . . . . . 9  |-  ( k  e.  ( ( M  +  1 ) ... H )  ->  (
k  x.  2 )  e.  RR )
77 lenlt 10116 . . . . . . . . 9  |-  ( ( ( P  /  2
)  e.  RR  /\  ( k  x.  2 )  e.  RR )  ->  ( ( P  /  2 )  <_ 
( k  x.  2 )  <->  -.  ( k  x.  2 )  <  ( P  /  2 ) ) )
7836, 76, 77syl2an 494 . . . . . . . 8  |-  ( ( P  e.  NN  /\  k  e.  ( ( M  +  1 ) ... H ) )  ->  ( ( P  /  2 )  <_ 
( k  x.  2 )  <->  -.  ( k  x.  2 )  <  ( P  /  2 ) ) )
7972, 78mpbid 222 . . . . . . 7  |-  ( ( P  e.  NN  /\  k  e.  ( ( M  +  1 ) ... H ) )  ->  -.  ( k  x.  2 )  <  ( P  /  2 ) )
809, 79sylan 488 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  -.  ( k  x.  2 )  <  ( P  /  2 ) )
8180adantr 481 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  /\  x  =  k )  ->  -.  ( k  x.  2 )  <  ( P  /  2 ) )
8281iffalsed 4097 . . . 4  |-  ( ( ( ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  /\  x  =  k )  ->  if ( ( k  x.  2 )  <  ( P  /  2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) )  =  ( P  -  ( k  x.  2 ) ) )
837, 82eqtrd 2656 . . 3  |-  ( ( ( ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  /\  x  =  k )  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  ( P  -  ( k  x.  2 ) ) )
848, 11gausslemma2dlem0d 25084 . . . . . 6  |-  ( ph  ->  M  e.  NN0 )
85 nn0p1nn 11332 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  +  1 )  e.  NN )
86 nnuz 11723 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
8785, 86syl6eleq 2711 . . . . . 6  |-  ( M  e.  NN0  ->  ( M  +  1 )  e.  ( ZZ>= `  1 )
)
8884, 87syl 17 . . . . 5  |-  ( ph  ->  ( M  +  1 )  e.  ( ZZ>= ` 
1 ) )
89 fzss1 12380 . . . . 5  |-  ( ( M  +  1 )  e.  ( ZZ>= `  1
)  ->  ( ( M  +  1 ) ... H )  C_  ( 1 ... H
) )
9088, 89syl 17 . . . 4  |-  ( ph  ->  ( ( M  + 
1 ) ... H
)  C_  ( 1 ... H ) )
9190sselda 3603 . . 3  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  k  e.  ( 1 ... H
) )
92 ovexd 6680 . . 3  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  ( P  -  ( k  x.  2 ) )  e. 
_V )
932, 83, 91, 92fvmptd 6288 . 2  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... H
) )  ->  ( R `  k )  =  ( P  -  ( k  x.  2 ) ) )
9493ralrimiva 2966 1  |-  ( ph  ->  A. k  e.  ( ( M  +  1 ) ... H ) ( R `  k
)  =  ( P  -  ( k  x.  2 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   4c4 11072   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   |_cfl 12591   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  gausslemma2dlem5a  25095  gausslemma2dlem6  25097
  Copyright terms: Public domain W3C validator