HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsssh Structured version   Visualization version   Unicode version

Theorem hhsssh 28126
Description: The predicate " H is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
hhsst.2  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
Assertion
Ref Expression
hhsssh  |-  ( H  e.  SH  <->  ( W  e.  ( SubSp `  U )  /\  H  C_  ~H )
)

Proof of Theorem hhsssh
StepHypRef Expression
1 hhsst.1 . . . 4  |-  U  = 
<. <.  +h  ,  .h  >. ,  normh >.
2 hhsst.2 . . . 4  |-  W  = 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
31, 2hhsst 28123 . . 3  |-  ( H  e.  SH  ->  W  e.  ( SubSp `  U )
)
4 shss 28067 . . 3  |-  ( H  e.  SH  ->  H  C_ 
~H )
53, 4jca 554 . 2  |-  ( H  e.  SH  ->  ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) )
6 eleq1 2689 . . 3  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( H  e.  SH  <->  if (
( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  e.  SH ) )
7 eqid 2622 . . . 4  |-  <. <. (  +h  |`  ( if ( ( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >.  =  <. <. (  +h  |`  ( if ( ( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >.
8 xpeq1 5128 . . . . . . . . . . . . 13  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( H  X.  H )  =  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  X.  H
) )
9 xpeq2 5129 . . . . . . . . . . . . 13  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  H )  =  ( if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) )
108, 9eqtrd 2656 . . . . . . . . . . . 12  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( H  X.  H )  =  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) )
1110reseq2d 5396 . . . . . . . . . . 11  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  (  +h  |`  ( H  X.  H ) )  =  (  +h  |`  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) )
12 xpeq2 5129 . . . . . . . . . . . 12  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( CC  X.  H )  =  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) )
1312reseq2d 5396 . . . . . . . . . . 11  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  (  .h  |`  ( CC  X.  H ) )  =  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) ) )
1411, 13opeq12d 4410 . . . . . . . . . 10  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>.  =  <. (  +h  |`  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) >.
)
15 reseq2 5391 . . . . . . . . . 10  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( normh 
|`  H )  =  ( normh  |`  if ( ( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) )
1614, 15opeq12d 4410 . . . . . . . . 9  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.  =  <. <.
(  +h  |`  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >. )
172, 16syl5eq 2668 . . . . . . . 8  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  W  =  <. <. (  +h  |`  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >. )
1817eleq1d 2686 . . . . . . 7  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( W  e.  ( SubSp `  U )  <->  <. <. (  +h  |`  ( if ( ( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >.  e.  ( SubSp `  U ) ) )
19 sseq1 3626 . . . . . . 7  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( H  C_  ~H  <->  if (
( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  C_ 
~H ) )
2018, 19anbi12d 747 . . . . . 6  |-  ( H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  (
( W  e.  (
SubSp `  U )  /\  H  C_  ~H )  <->  ( <. <.
(  +h  |`  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >.  e.  ( SubSp `  U )  /\  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  C_ 
~H ) ) )
21 xpeq1 5128 . . . . . . . . . . . 12  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( ~H  X.  ~H )  =  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  X.  ~H ) )
22 xpeq2 5129 . . . . . . . . . . . 12  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  ~H )  =  ( if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) )
2321, 22eqtrd 2656 . . . . . . . . . . 11  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( ~H  X.  ~H )  =  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) )
2423reseq2d 5396 . . . . . . . . . 10  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  (  +h  |`  ( ~H  X.  ~H ) )  =  (  +h  |`  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) )
25 xpeq2 5129 . . . . . . . . . . 11  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( CC  X.  ~H )  =  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) )
2625reseq2d 5396 . . . . . . . . . 10  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  (  .h  |`  ( CC  X.  ~H ) )  =  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) )
2724, 26opeq12d 4410 . . . . . . . . 9  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  <. (  +h  |`  ( ~H  X.  ~H ) ) ,  (  .h  |`  ( CC  X.  ~H ) ) >.  =  <. (  +h  |`  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. )
28 reseq2 5391 . . . . . . . . 9  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( normh 
|`  ~H )  =  (
normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
2927, 28opeq12d 4410 . . . . . . . 8  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  <. <. (  +h  |`  ( ~H  X.  ~H ) ) ,  (  .h  |`  ( CC  X.  ~H ) ) >. ,  ( normh  |`  ~H ) >.  =  <. <. (  +h  |`  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >. )
3029eleq1d 2686 . . . . . . 7  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( <. <. (  +h  |`  ( ~H  X.  ~H ) ) ,  (  .h  |`  ( CC  X.  ~H ) )
>. ,  ( normh  |`  ~H ) >.  e.  ( SubSp `  U )  <->  <. <. (  +h  |`  ( if ( ( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >.  e.  ( SubSp `  U ) ) )
31 sseq1 3626 . . . . . . 7  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  ( ~H  C_  ~H  <->  if (
( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  C_ 
~H ) )
3230, 31anbi12d 747 . . . . . 6  |-  ( ~H  =  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H )  ->  (
( <. <. (  +h  |`  ( ~H  X.  ~H ) ) ,  (  .h  |`  ( CC  X.  ~H ) )
>. ,  ( normh  |`  ~H ) >.  e.  ( SubSp `  U )  /\  ~H  C_  ~H )  <->  ( <. <.
(  +h  |`  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >.  e.  ( SubSp `  U )  /\  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  C_ 
~H ) ) )
33 ax-hfvadd 27857 . . . . . . . . . . . 12  |-  +h  :
( ~H  X.  ~H )
--> ~H
34 ffn 6045 . . . . . . . . . . . 12  |-  (  +h  : ( ~H  X.  ~H ) --> ~H  ->  +h  Fn  ( ~H  X.  ~H )
)
35 fnresdm 6000 . . . . . . . . . . . 12  |-  (  +h  Fn  ( ~H  X.  ~H )  ->  (  +h  |`  ( ~H  X.  ~H ) )  =  +h  )
3633, 34, 35mp2b 10 . . . . . . . . . . 11  |-  (  +h  |`  ( ~H  X.  ~H ) )  =  +h
37 ax-hfvmul 27862 . . . . . . . . . . . 12  |-  .h  :
( CC  X.  ~H )
--> ~H
38 ffn 6045 . . . . . . . . . . . 12  |-  (  .h  : ( CC  X.  ~H ) --> ~H  ->  .h  Fn  ( CC  X.  ~H )
)
39 fnresdm 6000 . . . . . . . . . . . 12  |-  (  .h  Fn  ( CC  X.  ~H )  ->  (  .h  |`  ( CC  X.  ~H ) )  =  .h  )
4037, 38, 39mp2b 10 . . . . . . . . . . 11  |-  (  .h  |`  ( CC  X.  ~H ) )  =  .h
4136, 40opeq12i 4407 . . . . . . . . . 10  |-  <. (  +h  |`  ( ~H  X.  ~H ) ) ,  (  .h  |`  ( CC  X.  ~H ) ) >.  =  <.  +h  ,  .h  >.
42 normf 27980 . . . . . . . . . . 11  |-  normh : ~H --> RR
43 ffn 6045 . . . . . . . . . . 11  |-  ( normh : ~H --> RR  ->  normh  Fn  ~H )
44 fnresdm 6000 . . . . . . . . . . 11  |-  ( normh  Fn 
~H  ->  ( normh  |`  ~H )  =  normh )
4542, 43, 44mp2b 10 . . . . . . . . . 10  |-  ( normh  |`  ~H )  =  normh
4641, 45opeq12i 4407 . . . . . . . . 9  |-  <. <. (  +h  |`  ( ~H  X.  ~H ) ) ,  (  .h  |`  ( CC  X.  ~H ) ) >. ,  ( normh  |`  ~H ) >.  =  <. <.  +h  ,  .h  >. ,  normh >.
4746, 1eqtr4i 2647 . . . . . . . 8  |-  <. <. (  +h  |`  ( ~H  X.  ~H ) ) ,  (  .h  |`  ( CC  X.  ~H ) ) >. ,  ( normh  |`  ~H ) >.  =  U
481hhnv 28022 . . . . . . . . 9  |-  U  e.  NrmCVec
49 eqid 2622 . . . . . . . . . 10  |-  ( SubSp `  U )  =  (
SubSp `  U )
5049sspid 27580 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  U  e.  (
SubSp `  U ) )
5148, 50ax-mp 5 . . . . . . . 8  |-  U  e.  ( SubSp `  U )
5247, 51eqeltri 2697 . . . . . . 7  |-  <. <. (  +h  |`  ( ~H  X.  ~H ) ) ,  (  .h  |`  ( CC  X.  ~H ) ) >. ,  ( normh  |`  ~H ) >.  e.  ( SubSp `  U
)
53 ssid 3624 . . . . . . 7  |-  ~H  C_  ~H
5452, 53pm3.2i 471 . . . . . 6  |-  ( <. <. (  +h  |`  ( ~H  X.  ~H ) ) ,  (  .h  |`  ( CC  X.  ~H ) )
>. ,  ( normh  |`  ~H ) >.  e.  ( SubSp `  U )  /\  ~H  C_  ~H )
5520, 32, 54elimhyp 4146 . . . . 5  |-  ( <. <. (  +h  |`  ( if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >.  e.  ( SubSp `  U )  /\  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  C_ 
~H )
5655simpli 474 . . . 4  |-  <. <. (  +h  |`  ( if ( ( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  X.  if ( ( W  e.  ( SubSp `  U
)  /\  H  C_  ~H ) ,  H ,  ~H ) ) ) ,  (  .h  |`  ( CC  X.  if ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H ) ,  H ,  ~H ) ) )
>. ,  ( normh  |`  if ( ( W  e.  ( SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )
) >.  e.  ( SubSp `  U )
5755simpri 478 . . . 4  |-  if ( ( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  C_ 
~H
581, 7, 56, 57hhshsslem2 28125 . . 3  |-  if ( ( W  e.  (
SubSp `  U )  /\  H  C_  ~H ) ,  H ,  ~H )  e.  SH
596, 58dedth 4139 . 2  |-  ( ( W  e.  ( SubSp `  U )  /\  H  C_ 
~H )  ->  H  e.  SH )
605, 59impbii 199 1  |-  ( H  e.  SH  <->  ( W  e.  ( SubSp `  U )  /\  H  C_  ~H )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ifcif 4086   <.cop 4183    X. cxp 5112    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888   CCcc 9934   RRcr 9935   NrmCVeccnv 27439   SubSpcss 27576   ~Hchil 27776    +h cva 27777    .h csm 27778   normhcno 27780   SHcsh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033  df-haus 21119  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-ssp 27577  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-sh 28064  df-ch 28078  df-ch0 28110
This theorem is referenced by:  hhsssh2  28127
  Copyright terms: Public domain W3C validator