Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicc Structured version   Visualization version   Unicode version

Theorem iinhoiicc 40888
Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiicc.k  |-  F/ k
ph
iunhoiicc.a  |-  ( (
ph  /\  k  e.  X )  ->  A  e.  RR )
iunhoiicc.b  |-  ( (
ph  /\  k  e.  X )  ->  B  e.  RR )
Assertion
Ref Expression
iinhoiicc  |-  ( ph  -> 
|^|_ n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) )  =  X_ k  e.  X  ( A [,] B ) )
Distinct variable groups:    A, n    B, n    k, X, n    ph, n
Allowed substitution hints:    ph( k)    A( k)    B( k)

Proof of Theorem iinhoiicc
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
1  /  n )  =  ( 1  /  m ) )
21oveq2d 6666 . . . . . . . . . . 11  |-  ( n  =  m  ->  ( B  +  ( 1  /  n ) )  =  ( B  +  ( 1  /  m
) ) )
32oveq2d 6666 . . . . . . . . . 10  |-  ( n  =  m  ->  ( A [,) ( B  +  ( 1  /  n
) ) )  =  ( A [,) ( B  +  ( 1  /  m ) ) ) )
43ixpeq2dv 7924 . . . . . . . . 9  |-  ( n  =  m  ->  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) )  =  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m
) ) ) )
54cbviinv 4560 . . . . . . . 8  |-  |^|_ n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) )  =  |^|_ m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m ) ) )
65eleq2i 2693 . . . . . . 7  |-  ( f  e.  |^|_ n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) )  <-> 
f  e.  |^|_ m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m ) ) ) )
76biimpi 206 . . . . . 6  |-  ( f  e.  |^|_ n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) )  ->  f  e.  |^|_ m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m ) ) ) )
87adantl 482 . . . . 5  |-  ( (
ph  /\  f  e.  |^|_
n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n
) ) ) )  ->  f  e.  |^|_ m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m ) ) ) )
9 iunhoiicc.k . . . . . . 7  |-  F/ k
ph
10 nfcv 2764 . . . . . . . 8  |-  F/_ k
f
11 nfcv 2764 . . . . . . . . 9  |-  F/_ k NN
12 nfixp1 7928 . . . . . . . . 9  |-  F/_ k X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m ) ) )
1311, 12nfiin 4549 . . . . . . . 8  |-  F/_ k |^|_ m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m
) ) )
1410, 13nfel 2777 . . . . . . 7  |-  F/ k  f  e.  |^|_ m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m ) ) )
159, 14nfan 1828 . . . . . 6  |-  F/ k ( ph  /\  f  e.  |^|_ m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m ) ) ) )
16 iunhoiicc.a . . . . . . 7  |-  ( (
ph  /\  k  e.  X )  ->  A  e.  RR )
1716adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  f  e.  |^|_ m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m ) ) ) )  /\  k  e.  X )  ->  A  e.  RR )
18 iunhoiicc.b . . . . . . 7  |-  ( (
ph  /\  k  e.  X )  ->  B  e.  RR )
1918adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  f  e.  |^|_ m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m ) ) ) )  /\  k  e.  X )  ->  B  e.  RR )
206biimpri 218 . . . . . . 7  |-  ( f  e.  |^|_ m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m ) ) )  ->  f  e.  |^|_ n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) ) )
2120adantl 482 . . . . . 6  |-  ( (
ph  /\  f  e.  |^|_
m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m
) ) ) )  ->  f  e.  |^|_ n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) ) )
2215, 17, 19, 21iinhoiicclem 40887 . . . . 5  |-  ( (
ph  /\  f  e.  |^|_
m  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  m
) ) ) )  ->  f  e.  X_ k  e.  X  ( A [,] B ) )
238, 22syldan 487 . . . 4  |-  ( (
ph  /\  f  e.  |^|_
n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n
) ) ) )  ->  f  e.  X_ k  e.  X  ( A [,] B ) )
2423ralrimiva 2966 . . 3  |-  ( ph  ->  A. f  e.  |^|_  n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) ) f  e.  X_ k  e.  X  ( A [,] B ) )
25 dfss3 3592 . . 3  |-  ( |^|_ n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) )  C_  X_ k  e.  X  ( A [,] B )  <->  A. f  e.  |^|_  n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) ) f  e.  X_ k  e.  X  ( A [,] B ) )
2624, 25sylibr 224 . 2  |-  ( ph  -> 
|^|_ n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) ) 
C_  X_ k  e.  X  ( A [,] B ) )
27 nfv 1843 . . . . . 6  |-  F/ k  n  e.  NN
289, 27nfan 1828 . . . . 5  |-  F/ k ( ph  /\  n  e.  NN )
2916rexrd 10089 . . . . . . 7  |-  ( (
ph  /\  k  e.  X )  ->  A  e.  RR* )
3029adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  A  e.  RR* )
3118adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  B  e.  RR )
32 nnrp 11842 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  n  e.  RR+ )
3332ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  n  e.  RR+ )
3433rpreccld 11882 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  (
1  /  n )  e.  RR+ )
3534rpred 11872 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  (
1  /  n )  e.  RR )
3631, 35readdcld 10069 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  ( B  +  ( 1  /  n ) )  e.  RR )
3736rexrd 10089 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  ( B  +  ( 1  /  n ) )  e.  RR* )
3816adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  A  e.  RR )
3938leidd 10594 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  A  <_  A )
4031, 34ltaddrpd 11905 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  B  <  ( B  +  ( 1  /  n ) ) )
41 iccssico 12245 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  ( B  +  ( 1  /  n ) )  e.  RR* )  /\  ( A  <_  A  /\  B  <  ( B  +  ( 1  /  n ) ) ) )  ->  ( A [,] B )  C_  ( A [,) ( B  +  ( 1  /  n
) ) ) )
4230, 37, 39, 40, 41syl22anc 1327 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  X )  ->  ( A [,] B )  C_  ( A [,) ( B  +  ( 1  /  n ) ) ) )
4328, 42ixpssixp 39269 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  X_ k  e.  X  ( A [,] B )  C_  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) ) )
4443ralrimiva 2966 . . 3  |-  ( ph  ->  A. n  e.  NN  X_ k  e.  X  ( A [,] B ) 
C_  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) ) )
45 ssiin 4570 . . 3  |-  ( X_ k  e.  X  ( A [,] B )  C_  |^|_
n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n
) ) )  <->  A. n  e.  NN  X_ k  e.  X  ( A [,] B ) 
C_  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) ) )
4644, 45sylibr 224 . 2  |-  ( ph  -> 
X_ k  e.  X  ( A [,] B ) 
C_  |^|_ n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) ) )
4726, 46eqssd 3620 1  |-  ( ph  -> 
|^|_ n  e.  NN  X_ k  e.  X  ( A [,) ( B  +  ( 1  /  n ) ) )  =  X_ k  e.  X  ( A [,] B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912    C_ wss 3574   |^|_ciin 4521   class class class wbr 4653  (class class class)co 6650   X_cixp 7908   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   RR+crp 11832   [,)cico 12177   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ico 12181  df-icc 12182  df-fl 12593
This theorem is referenced by:  vonicclem2  40898
  Copyright terms: Public domain W3C validator