Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem20 Structured version   Visualization version   Unicode version

Theorem poimirlem20 33429
Description: Lemma for poimir 33442 establishing existence for poimirlem21 33430. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem22.1  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
poimirlem22.2  |-  ( ph  ->  T  e.  S )
poimirlem22.3  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/=  0 )
poimirlem21.4  |-  ( ph  ->  ( 2nd `  T
)  =  N )
Assertion
Ref Expression
poimirlem20  |-  ( ph  ->  E. z  e.  S  z  =/=  T )
Distinct variable groups:    f, j, n, p, t, y, z    ph, j, n, y    j, F, n, y    j, N, n, y    T, j, n, y    ph, p, t    f, K, j, n, p, t    f, N, p, t    T, f, p    ph, z    f, F, p, t, z    z, K    z, N    t, T, z    S, j, n, p, t, y, z
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem20
StepHypRef Expression
1 oveq2 6658 . . . . . . . . 9  |-  ( 1  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ,  1 ,  0 )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  - 
1 )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )
21eleq1d 2686 . . . . . . . 8  |-  ( 1  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ,  1 ,  0 )  ->  (
( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  1 )  e.  ( 0..^ K )  <->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) )  e.  ( 0..^ K ) ) )
3 oveq2 6658 . . . . . . . . 9  |-  ( 0  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ,  1 ,  0 )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  - 
0 )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )
43eleq1d 2686 . . . . . . . 8  |-  ( 0  =  if ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) ,  1 ,  0 )  ->  (
( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  0 )  e.  ( 0..^ K )  <->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) )  e.  ( 0..^ K ) ) )
5 fveq2 6191 . . . . . . . . . . . 12  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( ( 1st `  ( 1st `  T
) ) `  n
)  =  ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ) )
65oveq1d 6665 . . . . . . . . . . 11  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( (
( 1st `  ( 1st `  T ) ) `
 n )  - 
1 )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  -  1 ) )
76adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  ->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  1 )  =  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  -  1 ) )
8 poimirlem22.2 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  T  e.  S )
9 elrabi 3359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
10 poimirlem22.s . . . . . . . . . . . . . . . . . . . . 21  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
119, 10eleq2s 2719 . . . . . . . . . . . . . . . . . . . 20  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
128, 11syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
13 xp1st 7198 . . . . . . . . . . . . . . . . . . 19  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
1412, 13syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1st `  T
)  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )
15 xp1st 7198 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
1614, 15syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
17 elmapi 7879 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
1816, 17syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1st `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 0..^ K ) )
19 xp2nd 7199 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
2014, 19syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
21 fvex 6201 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
22 f1oeq1 6127 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
2321, 22elab 3350 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
2420, 23sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
25 f1of 6137 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) --> ( 1 ... N
) )
2624, 25syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) --> ( 1 ... N ) )
27 poimir.0 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN )
28 elfz1end 12371 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  <->  N  e.  ( 1 ... N
) )
2927, 28sylib 208 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  ( 1 ... N ) )
3026, 29ffvelrnd 6360 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( 1 ... N
) )
3118, 30ffvelrnd 6360 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  ( 0..^ K ) )
32 elfzonn0 12512 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  ( 0..^ K )  -> 
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  NN0 )
3331, 32syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  NN0 )
34 fvex 6201 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  ( 1st `  T ) ) `  N )  e.  _V
35 eleq1 2689 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( n  e.  ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) ) `  N
)  e.  ( 1 ... N ) ) )
3635anbi2d 740 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( ( ph  /\  n  e.  ( 1 ... N ) )  <->  ( ph  /\  ( ( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( 1 ... N
) ) ) )
37 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( p `  n )  =  ( p `  ( ( 2nd `  ( 1st `  T ) ) `  N ) ) )
3837neeq1d 2853 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( (
p `  n )  =/=  0  <->  ( p `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  =/=  0 ) )
3938rexbidv 3052 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( E. p  e.  ran  F ( p `  n )  =/=  0  <->  E. p  e.  ran  F ( p `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =/=  0
) )
4036, 39imbi12d 334 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
)  ->  ( (
( ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/=  0 )  <->  ( ( ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  N
)  e.  ( 1 ... N ) )  ->  E. p  e.  ran  F ( p `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =/=  0 ) ) )
41 poimirlem22.3 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  E. p  e.  ran  F ( p `
 n )  =/=  0 )
4234, 40, 41vtocl 3259 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( ( 2nd `  ( 1st `  T
) ) `  N
)  e.  ( 1 ... N ) )  ->  E. p  e.  ran  F ( p `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =/=  0 )
4330, 42mpdan 702 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. p  e.  ran  F ( p `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =/=  0 )
44 fveq1 6190 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) )  ->  ( p `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  =  ( ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  N ) ) )
45 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 1st `  ( 1st `  T ) ) : ( 1 ... N
) --> ( 0..^ K )  ->  ( 1st `  ( 1st `  T
) )  Fn  (
1 ... N ) )
4618, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
4746adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 1st `  ( 1st `  T
) )  Fn  (
1 ... N ) )
48 1ex 10035 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  1  e.  _V
49 fnconstg 6093 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 1  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) ) )
5048, 49ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )
51 c0ex 10034 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  0  e.  _V
52 fnconstg 6093 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( 0  e.  _V  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) ) )
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )
5450, 53pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
55 dff1o3 6143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
)  /\  Fun  `' ( 2nd `  ( 1st `  T ) ) ) )
5655simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  Fun  `' ( 2nd `  ( 1st `  T ) ) )
5724, 56syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  Fun  `' ( 2nd `  ( 1st `  T
) ) )
58 imain 5974 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( Fun  `' ( 2nd `  ( 1st `  T ) )  ->  ( ( 2nd `  ( 1st `  T
) ) " (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) ) )
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... N
) ) )  =  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) ) ) )
60 elfznn0 12433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  NN0 )
6160nn0red 11352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  RR )
6261ltp1d 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  <  ( y  +  1 ) )
63 fzdisj 12368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( y  <  ( y  +  1 )  ->  (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... N ) )  =  (/) )
6462, 63syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 1 ... y
)  i^i  ( (
y  +  1 ) ... N ) )  =  (/) )
6564imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... N
) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" (/) ) )
66 ima0 5481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 2nd `  ( 1st `  T ) ) " (/) )  =  (/)
6765, 66syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  i^i  ( ( y  +  1 ) ... N
) ) )  =  (/) )
6859, 67sylan9req 2677 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  =  (/) )
69 fnun 5997 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  Fn  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  /\  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } )  Fn  (
( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  /\  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  i^i  (
( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  =  (/) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) ) )
7054, 68, 69sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) ) )
71 imaundi 5545 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( 2nd `  ( 1st `  T ) ) "
( ( 1 ... y )  u.  (
( y  +  1 ) ... N ) ) )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
72 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( y  e.  NN0  ->  ( y  +  1 )  e.  NN )
73 nnuz 11723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  NN  =  ( ZZ>= `  1 )
7472, 73syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( y  e.  NN0  ->  ( y  +  1 )  e.  ( ZZ>= `  1 )
)
7560, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  ( ZZ>= `  1
) )
7675adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
y  +  1 )  e.  ( ZZ>= `  1
) )
7727nncnd 11036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ph  ->  N  e.  CC )
78 npcan1 10455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
7977, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
8079adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  =  N )
81 elfzuz3 12339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  y
) )
82 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( N  -  1 )  e.  ( ZZ>= `  y
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  y )
)
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  y
) )
8483adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  y
) )
8580, 84eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  y )
)
86 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( y  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  y )
)  ->  ( 1 ... N )  =  ( ( 1 ... y )  u.  (
( y  +  1 ) ... N ) ) )
8776, 85, 86syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... N )  =  ( ( 1 ... y )  u.  (
( y  +  1 ) ... N ) ) )
8887imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  u.  ( ( y  +  1 ) ... N
) ) ) )
89 f1ofo 6144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N )
-onto-> ( 1 ... N
) )
90 foima 6120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
) -onto-> ( 1 ... N )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
9124, 89, 903syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
9291adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... N ) )  =  ( 1 ... N
) )
9388, 92eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( 1 ... y )  u.  ( ( y  +  1 ) ... N
) ) )  =  ( 1 ... N
) )
9471, 93syl5eqr 2670 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  =  ( 1 ... N ) )
9594fneq2d 5982 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) )  Fn  ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  u.  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) ) )  <->  ( (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) )  Fn  ( 1 ... N ) ) )
9670, 95mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  Fn  ( 1 ... N ) )
97 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 1 ... N )  e. 
_V
9897a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... N )  e. 
_V )
99 inidm 3822 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
100 eqidd 2623 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
101 f1ofn 6138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  ->  ( 2nd `  ( 1st `  T
) )  Fn  (
1 ... N ) )
10224, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N ) )
103102adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  ( 1st `  T
) )  Fn  (
1 ... N ) )
104 fzss1 12380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
y  +  1 ) ... N )  C_  ( 1 ... N
) )
10575, 104syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 ) ... N ) 
C_  ( 1 ... N ) )
106105adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( y  +  1 ) ... N ) 
C_  ( 1 ... N ) )
107 eluzp1p1 11713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( N  -  1 )  e.  ( ZZ>= `  y
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( y  +  1 ) ) )
108 uzss 11708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  (
y  +  1 ) )  ->  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) )  C_  ( ZZ>=
`  ( y  +  1 ) ) )
10981, 107, 1083syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  ( ZZ>=
`  ( ( N  -  1 )  +  1 ) )  C_  ( ZZ>= `  ( y  +  1 ) ) )
110109adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( ZZ>=
`  ( ( N  -  1 )  +  1 ) )  C_  ( ZZ>= `  ( y  +  1 ) ) )
11127nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ph  ->  N  e.  ZZ )
112 uzid 11702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ph  ->  N  e.  ( ZZ>= `  N ) )
11479fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ph  ->  ( ZZ>= `  ( ( N  -  1 )  +  1 ) )  =  ( ZZ>= `  N
) )
115113, 114eleqtrrd 2704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ph  ->  N  e.  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) ) )
116115adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
117110, 116sseldd 3604 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  ( y  +  1 ) ) )
118 eluzfz2 12349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  e.  ( ZZ>= `  (
y  +  1 ) )  ->  N  e.  ( ( y  +  1 ) ... N
) )
119117, 118syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ( y  +  1 ) ... N
) )
120 fnfvima 6496 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( 2nd `  ( 1st `  T ) )  Fn  ( 1 ... N )  /\  (
( y  +  1 ) ... N ) 
C_  ( 1 ... N )  /\  N  e.  ( ( y  +  1 ) ... N
) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
121103, 106, 119, 120syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
122 fvun2 6270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  Fn  ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  /\  (
( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } )  Fn  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  /\  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  =  (/)  /\  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) ) )  ->  ( (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `  N ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ) )
12350, 53, 122mp3an12 1414 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  i^i  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) ) )  =  (/)  /\  ( ( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )  ->  ( ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) ) )
12468, 121, 123syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
12551fvconst2 6469 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  -> 
( ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  =  0 )
126121, 125syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =  0 )
127124, 126eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  =  0 )
128127adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( 1 ... N
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) )  X.  { 0 } ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  =  0 )
12947, 96, 98, 98, 99, 100, 128ofval 6906 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  (
( 2nd `  ( 1st `  T ) ) `
 N )  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  +  0 ) )
13030, 129mpidan 704 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  +  0 ) )
13133nn0cnd 11353 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  CC )
132131addid1d 10236 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  +  0 )  =  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
133132adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  +  0 )  =  ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ) )
134130, 133eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =  ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) ) )
13544, 134sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  p  =  ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) ) )  ->  (
p `  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
136135adantllr 755 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  p  e.  ran  F )  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  p  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  -> 
( p `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =  ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) ) )
137 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
138137breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
139138ifbid 4108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
140139csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
141 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
142141fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
143141fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
144143imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
145144xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
146143imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
147146xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
148145, 147uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
149142, 148oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
150149csbeq2dv 3992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
151140, 150eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
152151mpteq2dv 4745 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
153152eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
154153, 10elrab2 3366 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
155154simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
1568, 155syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
15761adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  e.  RR )
158 peano2zm 11420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
159111, 158syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
160159zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ph  ->  ( N  -  1 )  e.  RR )
161160adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  -  1 )  e.  RR )
16227nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ph  ->  N  e.  RR )
163162adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  RR )
164 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  <_  ( N  -  1 ) )
165164adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  <_  ( N  -  1 ) )
166162ltm1d 10956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ph  ->  ( N  -  1 )  <  N )
167166adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( N  -  1 )  <  N )
168157, 161, 163, 165, 167lelttrd 10195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  <  N )
169 poimirlem21.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ph  ->  ( 2nd `  T
)  =  N )
170169adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  =  N )
171168, 170breqtrrd 4681 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  y  <  ( 2nd `  T
) )
172171iftrued 4094 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  y )
173172csbeq1d 3540 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ y  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
174 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  y  e. 
_V
175 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( j  =  y  ->  (
1 ... j )  =  ( 1 ... y
) )
176175imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  =  y  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) ) )
177176xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  =  y  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } ) )
178 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( j  =  y  ->  (
j  +  1 )  =  ( y  +  1 ) )
179178oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( j  =  y  ->  (
( j  +  1 ) ... N )  =  ( ( y  +  1 ) ... N ) )
180179imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( j  =  y  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
181180xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( j  =  y  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) )
182177, 181uneq12d 3768 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( j  =  y  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) )
183182oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( j  =  y  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
184174, 183csbie 3559 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  [_ y  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
185173, 184syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
186185mpteq2dva 4744 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
187156, 186eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) ) ) )
188187rneqd 5353 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ran  F  =  ran  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
189188eleq2d 2687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( p  e.  ran  F  <-> 
p  e.  ran  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
190 eqid 2622 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
191 ovex 6678 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) )  e.  _V
192190, 191elrnmpti 5376 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  ran  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) ) )  <->  E. y  e.  ( 0 ... ( N  -  1 ) ) p  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
193189, 192syl6bb 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( p  e.  ran  F  <->  E. y  e.  (
0 ... ( N  - 
1 ) ) p  =  ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) ) ) )
194193biimpa 501 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  e.  ran  F )  ->  E. y  e.  ( 0 ... ( N  -  1 ) ) p  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
195136, 194r19.29a 3078 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  p  e.  ran  F )  ->  (
p `  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
196195neeq1d 2853 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  p  e.  ran  F )  ->  (
( p `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =/=  0  <->  ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =/=  0 ) )
197196biimpd 219 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  ran  F )  ->  (
( p `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  =/=  0  ->  (
( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =/=  0
) )
198197rexlimdva 3031 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E. p  e. 
ran  F ( p `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =/=  0  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =/=  0
) )
19943, 198mpd 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =/=  0
)
200 elnnne0 11306 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  NN  <->  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  NN0  /\  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  =/=  0
) )
20133, 199, 200sylanbrc 698 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  NN )
202 nnm1nn0 11334 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  NN  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 )  e. 
NN0 )
203201, 202syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 )  e. 
NN0 )
204 elfzo0 12508 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  ( 0..^ K )  <->  ( (
( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  NN0  /\  K  e.  NN  /\  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  <  K
) )
20531, 204sylib 208 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  e.  NN0  /\  K  e.  NN  /\  ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  <  K ) )
206205simp2d 1074 . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  NN )
207203nn0red 11352 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 )  e.  RR )
20833nn0red 11352 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  RR )
209206nnred 11035 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  RR )
210208ltm1d 10956 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 )  < 
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) ) )
211 elfzolt2 12479 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  e.  ( 0..^ K )  -> 
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  <  K
)
21231, 211syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  <  K
)
213207, 208, 209, 210, 212lttrd 10198 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 )  < 
K )
214 elfzo0 12508 . . . . . . . . . . . 12  |-  ( ( ( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  -  1 )  e.  ( 0..^ K )  <->  ( (
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  -  1 )  e.  NN0  /\  K  e.  NN  /\  (
( ( 1st `  ( 1st `  T ) ) `
 ( ( 2nd `  ( 1st `  T
) ) `  N
) )  -  1 )  <  K ) )
215203, 206, 213, 214syl3anbrc 1246 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 1st `  ( 1st `  T
) ) `  (
( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 )  e.  ( 0..^ K ) )
216215adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  ->  ( ( ( 1st `  ( 1st `  T ) ) `  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  -  1 )  e.  ( 0..^ K ) )
2177, 216eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) )  ->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  1 )  e.  ( 0..^ K ) )
218217adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  - 
1 )  e.  ( 0..^ K ) )
21918ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  ( 0..^ K ) )
220 elfzonn0 12512 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  e.  ( 0..^ K )  ->  ( ( 1st `  ( 1st `  T
) ) `  n
)  e.  NN0 )
221219, 220syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e. 
NN0 )
222221nn0cnd 11353 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( 1st `  ( 1st `  T ) ) `
 n )  e.  CC )
223222subid1d 10381 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  - 
0 )  =  ( ( 1st `  ( 1st `  T ) ) `
 n ) )
224223, 219eqeltrd 2701 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  - 
0 )  e.  ( 0..^ K ) )
225224adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... N
) )  /\  -.  n  =  ( ( 2nd `  ( 1st `  T
) ) `  N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  - 
0 )  e.  ( 0..^ K ) )
2262, 4, 218, 225ifbothda 4123 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) )  e.  ( 0..^ K ) )
227 eqid 2622 . . . . . . 7  |-  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )
228226, 227fmptd 6385 . . . . . 6  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) ) : ( 1 ... N ) --> ( 0..^ K ) )
229 ovex 6678 . . . . . . 7  |-  ( 0..^ K )  e.  _V
230229, 97elmap 7886 . . . . . 6  |-  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N ) )  <->  ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) : ( 1 ... N ) --> ( 0..^ K ) )
231228, 230sylibr 224 . . . . 5  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N
) ) )
232 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( ( 1  +  1 ) ... N
) )  ->  n  e.  ( ( 1  +  1 ) ... N
) )
233 1z 11407 . . . . . . . . . . . . . . . 16  |-  1  e.  ZZ
234 peano2z 11418 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  ZZ  ->  (
1  +  1 )  e.  ZZ )
235233, 234ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 1  +  1 )  e.  ZZ
236111, 235jctil 560 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1  +  1 )  e.  ZZ  /\  N  e.  ZZ ) )
237 elfzelz 12342 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ( 1  +  1 ) ... N )  ->  n  e.  ZZ )
238237, 233jctir 561 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ( 1  +  1 ) ... N )  ->  (
n  e.  ZZ  /\  1  e.  ZZ )
)
239 fzsubel 12377 . . . . . . . . . . . . . 14  |-  ( ( ( ( 1  +  1 )  e.  ZZ  /\  N  e.  ZZ )  /\  ( n  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( n  e.  ( ( 1  +  1 ) ... N )  <-> 
( n  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( N  - 
1 ) ) ) )
240236, 238, 239syl2an 494 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( ( 1  +  1 ) ... N
) )  ->  (
n  e.  ( ( 1  +  1 ) ... N )  <->  ( n  -  1 )  e.  ( ( ( 1  +  1 )  - 
1 ) ... ( N  -  1 ) ) ) )
241232, 240mpbid 222 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ( 1  +  1 ) ... N
) )  ->  (
n  -  1 )  e.  ( ( ( 1  +  1 )  -  1 ) ... ( N  -  1 ) ) )
242 ax-1cn 9994 . . . . . . . . . . . . . 14  |-  1  e.  CC
243242, 242pncan3oi 10297 . . . . . . . . . . . . 13  |-  ( ( 1  +  1 )  -  1 )  =  1
244243oveq1i 6660 . . . . . . . . . . . 12  |-  ( ( ( 1  +  1 )  -  1 ) ... ( N  - 
1 ) )  =  ( 1 ... ( N  -  1 ) )
245241, 244syl6eleq 2711 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ( 1  +  1 ) ... N
) )  ->  (
n  -  1 )  e.  ( 1 ... ( N  -  1 ) ) )
246245ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  ( ( 1  +  1 ) ... N ) ( n  -  1 )  e.  ( 1 ... ( N  - 
1 ) ) )
247 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  y  e.  ( 1 ... ( N  -  1 ) ) )
248159, 233jctil 560 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  e.  ZZ  /\  ( N  -  1 )  e.  ZZ ) )
249 elfzelz 12342 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( 1 ... ( N  -  1 ) )  ->  y  e.  ZZ )
250249, 233jctir 561 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( 1 ... ( N  -  1 ) )  ->  (
y  e.  ZZ  /\  1  e.  ZZ )
)
251 fzaddel 12375 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( y  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( y  e.  ( 1 ... ( N  -  1 ) )  <-> 
( y  +  1 )  e.  ( ( 1  +  1 ) ... ( ( N  -  1 )  +  1 ) ) ) )
252248, 250, 251syl2an 494 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
y  e.  ( 1 ... ( N  - 
1 ) )  <->  ( y  +  1 )  e.  ( ( 1  +  1 ) ... (
( N  -  1 )  +  1 ) ) ) )
253247, 252mpbid 222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
y  +  1 )  e.  ( ( 1  +  1 ) ... ( ( N  - 
1 )  +  1 ) ) )
25479oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 1  +  1 ) ... (
( N  -  1 )  +  1 ) )  =  ( ( 1  +  1 ) ... N ) )
255254adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
( 1  +  1 ) ... ( ( N  -  1 )  +  1 ) )  =  ( ( 1  +  1 ) ... N ) )
256253, 255eleqtrd 2703 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  (
y  +  1 )  e.  ( ( 1  +  1 ) ... N ) )
257237zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ( 1  +  1 ) ... N )  ->  n  e.  CC )
258249zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( 1 ... ( N  -  1 ) )  ->  y  e.  CC )
259 subadd2 10285 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  y  e.  CC )  ->  (
( n  -  1 )  =  y  <->  ( y  +  1 )  =  n ) )
260242, 259mp3an2 1412 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  CC  /\  y  e.  CC )  ->  ( ( n  - 
1 )  =  y  <-> 
( y  +  1 )  =  n ) )
261 eqcom 2629 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( n  - 
1 )  <->  ( n  -  1 )  =  y )
262 eqcom 2629 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( y  +  1 )  <->  ( y  +  1 )  =  n )
263260, 261, 2623bitr4g 303 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  y  e.  CC )  ->  ( y  =  ( n  -  1 )  <-> 
n  =  ( y  +  1 ) ) )
264257, 258, 263syl2anr 495 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ( 1 ... ( N  - 
1 ) )  /\  n  e.  ( (
1  +  1 ) ... N ) )  ->  ( y  =  ( n  -  1 )  <->  n  =  (
y  +  1 ) ) )
265264ralrimiva 2966 . . . . . . . . . . . . 13  |-  ( y  e.  ( 1 ... ( N  -  1 ) )  ->  A. n  e.  ( ( 1  +  1 ) ... N
) ( y  =  ( n  -  1 )  <->  n  =  (
y  +  1 ) ) )
266265adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  A. n  e.  ( ( 1  +  1 ) ... N
) ( y  =  ( n  -  1 )  <->  n  =  (
y  +  1 ) ) )
267 reu6i 3397 . . . . . . . . . . . 12  |-  ( ( ( y  +  1 )  e.  ( ( 1  +  1 ) ... N )  /\  A. n  e.  ( ( 1  +  1 ) ... N ) ( y  =  ( n  -  1 )  <->  n  =  ( y  +  1 ) ) )  ->  E! n  e.  (
( 1  +  1 ) ... N ) y  =  ( n  -  1 ) )
268256, 266, 267syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( 1 ... ( N  -  1 ) ) )  ->  E! n  e.  ( (
1  +  1 ) ... N ) y  =  ( n  - 
1 ) )
269268ralrimiva 2966 . . . . . . . . . 10  |-  ( ph  ->  A. y  e.  ( 1 ... ( N  -  1 ) ) E! n  e.  ( ( 1  +  1 ) ... N ) y  =  ( n  -  1 ) )
270 eqid 2622 . . . . . . . . . . 11  |-  ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) )  =  ( n  e.  ( ( 1  +  1 ) ... N
)  |->  ( n  - 
1 ) )
271270f1ompt 6382 . . . . . . . . . 10  |-  ( ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) ) : ( ( 1  +  1 ) ... N ) -1-1-onto-> ( 1 ... ( N  - 
1 ) )  <->  ( A. n  e.  ( (
1  +  1 ) ... N ) ( n  -  1 )  e.  ( 1 ... ( N  -  1 ) )  /\  A. y  e.  ( 1 ... ( N  - 
1 ) ) E! n  e.  ( ( 1  +  1 ) ... N ) y  =  ( n  - 
1 ) ) )
272246, 269, 271sylanbrc 698 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  ( ( 1  +  1 ) ... N ) 
|->  ( n  -  1 ) ) : ( ( 1  +  1 ) ... N ) -1-1-onto-> ( 1 ... ( N  -  1 ) ) )
273 f1osng 6177 . . . . . . . . . 10  |-  ( ( 1  e.  _V  /\  N  e.  NN )  ->  { <. 1 ,  N >. } : { 1 } -1-1-onto-> { N } )
27448, 27, 273sylancr 695 . . . . . . . . 9  |-  ( ph  ->  { <. 1 ,  N >. } : { 1 } -1-1-onto-> { N } )
275160, 162ltnled 10184 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  - 
1 )  <  N  <->  -.  N  <_  ( N  -  1 ) ) )
276166, 275mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  -.  N  <_  ( N  -  1 ) )
277 elfzle2 12345 . . . . . . . . . . 11  |-  ( N  e.  ( 1 ... ( N  -  1 ) )  ->  N  <_  ( N  -  1 ) )
278276, 277nsyl 135 . . . . . . . . . 10  |-  ( ph  ->  -.  N  e.  ( 1 ... ( N  -  1 ) ) )
279 disjsn 4246 . . . . . . . . . 10  |-  ( ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/)  <->  -.  N  e.  ( 1 ... ( N  - 
1 ) ) )
280278, 279sylibr 224 . . . . . . . . 9  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/) )
281 1re 10039 . . . . . . . . . . . . . 14  |-  1  e.  RR
282281ltp1i 10927 . . . . . . . . . . . . 13  |-  1  <  ( 1  +  1 )
283235zrei 11383 . . . . . . . . . . . . . 14  |-  ( 1  +  1 )  e.  RR
284281, 283ltnlei 10158 . . . . . . . . . . . . 13  |-  ( 1  <  ( 1  +  1 )  <->  -.  (
1  +  1 )  <_  1 )
285282, 284mpbi 220 . . . . . . . . . . . 12  |-  -.  (
1  +  1 )  <_  1
286 elfzle1 12344 . . . . . . . . . . . 12  |-  ( 1  e.  ( ( 1  +  1 ) ... N )  ->  (
1  +  1 )  <_  1 )
287285, 286mto 188 . . . . . . . . . . 11  |-  -.  1  e.  ( ( 1  +  1 ) ... N
)
288 disjsn 4246 . . . . . . . . . . 11  |-  ( ( ( ( 1  +  1 ) ... N
)  i^i  { 1 } )  =  (/)  <->  -.  1  e.  ( (
1  +  1 ) ... N ) )
289287, 288mpbir 221 . . . . . . . . . 10  |-  ( ( ( 1  +  1 ) ... N )  i^i  { 1 } )  =  (/)
290 f1oun 6156 . . . . . . . . . 10  |-  ( ( ( ( n  e.  ( ( 1  +  1 ) ... N
)  |->  ( n  - 
1 ) ) : ( ( 1  +  1 ) ... N
)
-1-1-onto-> ( 1 ... ( N  -  1 ) )  /\  { <. 1 ,  N >. } : { 1 } -1-1-onto-> { N } )  /\  ( ( ( ( 1  +  1 ) ... N )  i^i 
{ 1 } )  =  (/)  /\  (
( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/) ) )  ->  (
( n  e.  ( ( 1  +  1 ) ... N ) 
|->  ( n  -  1 ) )  u.  { <. 1 ,  N >. } ) : ( ( ( 1  +  1 ) ... N )  u.  { 1 } ) -1-1-onto-> ( ( 1 ... ( N  -  1 ) )  u.  { N } ) )
291289, 290mpanr1 719 . . . . . . . . 9  |-  ( ( ( ( n  e.  ( ( 1  +  1 ) ... N
)  |->  ( n  - 
1 ) ) : ( ( 1  +  1 ) ... N
)
-1-1-onto-> ( 1 ... ( N  -  1 ) )  /\  { <. 1 ,  N >. } : { 1 } -1-1-onto-> { N } )  /\  ( ( 1 ... ( N  -  1 ) )  i^i  { N } )  =  (/) )  ->  ( ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) )  u.  { <. 1 ,  N >. } ) : ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) -1-1-onto-> ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
292272, 274, 280, 291syl21anc 1325 . . . . . . . 8  |-  ( ph  ->  ( ( n  e.  ( ( 1  +  1 ) ... N
)  |->  ( n  - 
1 ) )  u. 
{ <. 1 ,  N >. } ) : ( ( ( 1  +  1 ) ... N
)  u.  { 1 } ) -1-1-onto-> ( ( 1 ... ( N  -  1 ) )  u.  { N } ) )
293 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( n  =  1  ->  (
n  e.  ( ( 1  +  1 ) ... N )  <->  1  e.  ( ( 1  +  1 ) ... N
) ) )
294287, 293mtbiri 317 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  -.  n  e.  ( (
1  +  1 ) ... N ) )
295294necon2ai 2823 . . . . . . . . . . . . 13  |-  ( n  e.  ( ( 1  +  1 ) ... N )  ->  n  =/=  1 )
296 ifnefalse 4098 . . . . . . . . . . . . 13  |-  ( n  =/=  1  ->  if ( n  =  1 ,  N ,  ( n  -  1 ) )  =  ( n  - 
1 ) )
297295, 296syl 17 . . . . . . . . . . . 12  |-  ( n  e.  ( ( 1  +  1 ) ... N )  ->  if ( n  =  1 ,  N ,  ( n  -  1 ) )  =  ( n  - 
1 ) )
298297mpteq2ia 4740 . . . . . . . . . . 11  |-  ( n  e.  ( ( 1  +  1 ) ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) )  =  ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) )
299298uneq1i 3763 . . . . . . . . . 10  |-  ( ( n  e.  ( ( 1  +  1 ) ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) )  u.  { <. 1 ,  N >. } )  =  ( ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) )  u.  { <. 1 ,  N >. } )
30048a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  1  e.  _V )
301 ssv 3625 . . . . . . . . . . . 12  |-  NN  C_  _V
302301, 27sseldi 3601 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  _V )
30327, 73syl6eleq 2711 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
304 fzpred 12389 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( 1 ... N )  =  ( { 1 }  u.  ( ( 1  +  1 ) ... N ) ) )
305303, 304syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ... N
)  =  ( { 1 }  u.  (
( 1  +  1 ) ... N ) ) )
306 uncom 3757 . . . . . . . . . . . 12  |-  ( { 1 }  u.  (
( 1  +  1 ) ... N ) )  =  ( ( ( 1  +  1 ) ... N )  u.  { 1 } )
307305, 306syl6req 2673 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 1  +  1 ) ... N )  u.  {
1 } )  =  ( 1 ... N
) )
308 iftrue 4092 . . . . . . . . . . . 12  |-  ( n  =  1  ->  if ( n  =  1 ,  N ,  ( n  -  1 ) )  =  N )
309308adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  n  = 
1 )  ->  if ( n  =  1 ,  N ,  ( n  -  1 ) )  =  N )
310300, 302, 307, 309fmptapd 6437 . . . . . . . . . 10  |-  ( ph  ->  ( ( n  e.  ( ( 1  +  1 ) ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) )  u.  { <. 1 ,  N >. } )  =  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
311299, 310syl5eqr 2670 . . . . . . . . 9  |-  ( ph  ->  ( ( n  e.  ( ( 1  +  1 ) ... N
)  |->  ( n  - 
1 ) )  u. 
{ <. 1 ,  N >. } )  =  ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) )
31279, 303eqeltrd 2701 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 ) )
313 uzid 11702 . . . . . . . . . . . . 13  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
314 peano2uz 11741 . . . . . . . . . . . . 13  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
315159, 313, 3143syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1
) ) )
31679, 315eqeltrrd 2702 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
317 fzsplit2 12366 . . . . . . . . . . 11  |-  ( ( ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ( ZZ>= `  ( N  -  1 ) ) )  ->  ( 1 ... N )  =  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) ) )
318312, 316, 317syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... ( N  -  1 ) )  u.  ( ( ( N  -  1 )  +  1 ) ... N ) ) )
31979oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  ( N ... N ) )
320 fzsn 12383 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
321111, 320syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( N ... N
)  =  { N } )
322319, 321eqtrd 2656 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( N  -  1 )  +  1 ) ... N
)  =  { N } )
323322uneq2d 3767 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  u.  (
( ( N  - 
1 )  +  1 ) ... N ) )  =  ( ( 1 ... ( N  -  1 ) )  u.  { N }
) )
324318, 323eqtr2d 2657 . . . . . . . . 9  |-  ( ph  ->  ( ( 1 ... ( N  -  1 ) )  u.  { N } )  =  ( 1 ... N ) )
325311, 307, 324f1oeq123d 6133 . . . . . . . 8  |-  ( ph  ->  ( ( ( n  e.  ( ( 1  +  1 ) ... N )  |->  ( n  -  1 ) )  u.  { <. 1 ,  N >. } ) : ( ( ( 1  +  1 ) ... N )  u.  {
1 } ) -1-1-onto-> ( ( 1 ... ( N  -  1 ) )  u.  { N }
)  <->  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
326292, 325mpbid 222 . . . . . . 7  |-  ( ph  ->  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) )
327 f1oco 6159 . . . . . . 7  |-  ( ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  /\  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
32824, 326, 327syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
32997mptex 6486 . . . . . . . 8  |-  ( n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) )  e.  _V
33021, 329coex 7118 . . . . . . 7  |-  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )  e.  _V
331 f1oeq1 6127 . . . . . . 7  |-  ( f  =  ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) )  -> 
( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N )  <-> 
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
332330, 331elab 3350 . . . . . 6  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  <->  ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) )
333328, 332sylibr 224 . . . . 5  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
334 opelxpi 5148 . . . . 5  |-  ( ( ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) )  e.  ( ( 0..^ K )  ^m  ( 1 ... N
) )  /\  (
( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  ->  <. (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >.  e.  (
( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
335231, 333, 334syl2anc 693 . . . 4  |-  ( ph  -> 
<. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
>.  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) )
33627nnnn0d 11351 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
337 0elfz 12436 . . . . 5  |-  ( N  e.  NN0  ->  0  e.  ( 0 ... N
) )
338336, 337syl 17 . . . 4  |-  ( ph  ->  0  e.  ( 0 ... N ) )
339 opelxpi 5148 . . . 4  |-  ( (
<. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
>.  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  /\  0  e.  ( 0 ... N ) )  ->  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
340335, 338, 339syl2anc 693 . . 3  |-  ( ph  -> 
<. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
341 poimirlem22.1 . . . . 5  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
34227, 10, 341, 8, 41, 169poimirlem19 33428 . . . 4  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) )
343 elfzle1 12344 . . . . . . . . 9  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  0  <_  y )
344 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
345 lenlt 10116 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  y  e.  RR )  ->  ( 0  <_  y  <->  -.  y  <  0 ) )
346344, 61, 345sylancr 695 . . . . . . . . 9  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
0  <_  y  <->  -.  y  <  0 ) )
347343, 346mpbid 222 . . . . . . . 8  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  -.  y  <  0 )
348347iffalsed 4097 . . . . . . 7  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  if ( y  <  0 ,  y ,  ( y  +  1 ) )  =  ( y  +  1 ) )
349348csbeq1d 3540 . . . . . 6  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  = 
[_ ( y  +  1 )  /  j ]_ ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
350 ovex 6678 . . . . . . 7  |-  ( y  +  1 )  e. 
_V
351 oveq2 6658 . . . . . . . . . . 11  |-  ( j  =  ( y  +  1 )  ->  (
1 ... j )  =  ( 1 ... (
y  +  1 ) ) )
352351imaeq2d 5466 . . . . . . . . . 10  |-  ( j  =  ( y  +  1 )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) ) )
353352xpeq1d 5138 . . . . . . . . 9  |-  ( j  =  ( y  +  1 )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... j
) )  X.  {
1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } ) )
354 oveq1 6657 . . . . . . . . . . . 12  |-  ( j  =  ( y  +  1 )  ->  (
j  +  1 )  =  ( ( y  +  1 )  +  1 ) )
355354oveq1d 6665 . . . . . . . . . . 11  |-  ( j  =  ( y  +  1 )  ->  (
( j  +  1 ) ... N )  =  ( ( ( y  +  1 )  +  1 ) ... N ) )
356355imaeq2d 5466 . . . . . . . . . 10  |-  ( j  =  ( y  +  1 )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
357356xpeq1d 5138 . . . . . . . . 9  |-  ( j  =  ( y  +  1 )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )
358353, 357uneq12d 3768 . . . . . . . 8  |-  ( j  =  ( y  +  1 )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) )
359358oveq2d 6666 . . . . . . 7  |-  ( j  =  ( y  +  1 )  ->  (
( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  =  ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
360350, 359csbie 3559 . . . . . 6  |-  [_ (
y  +  1 )  /  j ]_ (
( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  =  ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) )
361349, 360syl6eq 2672 . . . . 5  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  =  ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
362361mpteq2ia 4740 . . . 4  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
363342, 362syl6eqr 2674 . . 3  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) )
364 opex 4932 . . . . . . . . . . 11  |-  <. (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >.  e.  _V
365364, 51op2ndd 7179 . . . . . . . . . 10  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( 2nd `  t
)  =  0 )
366365breq2d 4665 . . . . . . . . 9  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( y  <  ( 2nd `  t )  <->  y  <  0 ) )
367366ifbid 4108 . . . . . . . 8  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  if ( y  < 
( 2nd `  t
) ,  y ,  ( y  +  1 ) )  =  if ( y  <  0 ,  y ,  ( y  +  1 ) ) )
368367csbeq1d 3540 . . . . . . 7  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
369364, 51op1std 7178 . . . . . . . . . 10  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( 1st `  t
)  =  <. (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. )
37097mptex 6486 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  e.  _V
371370, 330op1std 7178 . . . . . . . . . 10  |-  ( ( 1st `  t )  =  <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >.  ->  ( 1st `  ( 1st `  t
) )  =  ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) )
372369, 371syl 17 . . . . . . . . 9  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( 1st `  ( 1st `  t ) )  =  ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) )
373370, 330op2ndd 7179 . . . . . . . . . . . . 13  |-  ( ( 1st `  t )  =  <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >.  ->  ( 2nd `  ( 1st `  t
) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) )
374369, 373syl 17 . . . . . . . . . . . 12  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( 2nd `  ( 1st `  t ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) )
375374imaeq1d 5465 . . . . . . . . . . 11  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( 1 ... j
) ) )
376375xpeq1d 5138 . . . . . . . . . 10  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } ) )
377374imaeq1d 5465 . . . . . . . . . . 11  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( j  +  1 ) ... N
) ) )
378377xpeq1d 5138 . . . . . . . . . 10  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( ( ( 2nd `  ( 1st `  t
) ) " (
( j  +  1 ) ... N ) )  X.  { 0 } )  =  ( ( ( ( 2nd `  ( 1st `  T
) )  o.  (
n  e.  ( 1 ... N )  |->  if ( n  =  1 ,  N ,  ( n  -  1 ) ) ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
379376, 378uneq12d 3768 . . . . . . . . 9  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( ( ( ( 2nd `  ( 1st `  t ) ) "
( 1 ... j
) )  X.  {
1 } )  u.  ( ( ( 2nd `  ( 1st `  t
) ) " (
( j  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )
380372, 379oveq12d 6668 . . . . . . . 8  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
381380csbeq2dv 3992 . . . . . . 7  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  t
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
382368, 381eqtrd 2656 . . . . . 6  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) )
383382mpteq2dv 4745 . . . . 5  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) )
384383eqeq2d 2632 . . . 4  |-  ( t  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) ) )
385384, 10elrab2 3366 . . 3  |-  ( <. <. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
>. ,  0 >.  e.  S  <->  ( <. <. (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  0 ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) ) ) )
386340, 363, 385sylanbrc 698 . 2  |-  ( ph  -> 
<. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  e.  S )
387364, 51op2ndd 7179 . . . . . 6  |-  ( T  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( 2nd `  T
)  =  0 )
388387eqcoms 2630 . . . . 5  |-  ( <. <. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
>. ,  0 >.  =  T  ->  ( 2nd `  T )  =  0 )
38927nnne0d 11065 . . . . . . 7  |-  ( ph  ->  N  =/=  0 )
390389necomd 2849 . . . . . 6  |-  ( ph  ->  0  =/=  N )
391 neeq1 2856 . . . . . 6  |-  ( ( 2nd `  T )  =  0  ->  (
( 2nd `  T
)  =/=  N  <->  0  =/=  N ) )
392390, 391syl5ibrcom 237 . . . . 5  |-  ( ph  ->  ( ( 2nd `  T
)  =  0  -> 
( 2nd `  T
)  =/=  N ) )
393388, 392syl5 34 . . . 4  |-  ( ph  ->  ( <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  =  T  ->  ( 2nd `  T )  =/=  N
) )
394393necon2d 2817 . . 3  |-  ( ph  ->  ( ( 2nd `  T
)  =  N  ->  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  =/=  T ) )
395169, 394mpd 15 . 2  |-  ( ph  -> 
<. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  =/=  T )
396 neeq1 2856 . . 3  |-  ( z  =  <. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  ->  ( z  =/=  T  <->  <. <. ( n  e.  ( 1 ... N ) 
|->  ( ( ( 1st `  ( 1st `  T
) ) `  n
)  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `  N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N ) 
|->  if ( n  =  1 ,  N , 
( n  -  1 ) ) ) )
>. ,  0 >.  =/= 
T ) )
397396rspcev 3309 . 2  |-  ( (
<. <. ( n  e.  ( 1 ... N
)  |->  ( ( ( 1st `  ( 1st `  T ) ) `  n )  -  if ( n  =  (
( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  e.  S  /\  <. <. (
n  e.  ( 1 ... N )  |->  ( ( ( 1st `  ( 1st `  T ) ) `
 n )  -  if ( n  =  ( ( 2nd `  ( 1st `  T ) ) `
 N ) ,  1 ,  0 ) ) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( n  e.  ( 1 ... N
)  |->  if ( n  =  1 ,  N ,  ( n  - 
1 ) ) ) ) >. ,  0 >.  =/=  T )  ->  E. z  e.  S  z  =/=  T )
398386, 395, 397syl2anc 693 1  |-  ( ph  ->  E. z  e.  S  z  =/=  T )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916   _Vcvv 3200   [_csb 3533    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115   "cima 5117    o. ccom 5118   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  poimirlem21  33430
  Copyright terms: Public domain W3C validator