MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icchmeo Structured version   Visualization version   Unicode version

Theorem icchmeo 22740
Description: The natural bijection from  [ 0 ,  1 ] to an arbitrary nontrivial closed interval  [ A ,  B ] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
icchmeo.j  |-  J  =  ( TopOpen ` fld )
icchmeo.f  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) )
Assertion
Ref Expression
icchmeo  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  F  e.  ( II Homeo ( Jt  ( A [,] B ) ) ) )
Distinct variable groups:    x, A    x, B    x, J
Allowed substitution hint:    F( x)

Proof of Theorem icchmeo
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 icchmeo.f . . . 4  |-  F  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) )
2 iitopon 22682 . . . . . 6  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
32a1i 11 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
4 icchmeo.j . . . . . . . . . 10  |-  J  =  ( TopOpen ` fld )
54dfii3 22686 . . . . . . . . 9  |-  II  =  ( Jt  ( 0 [,] 1 ) )
65oveq2i 6661 . . . . . . . 8  |-  ( II 
Cn  II )  =  ( II  Cn  ( Jt  ( 0 [,] 1
) ) )
74cnfldtop 22587 . . . . . . . . 9  |-  J  e. 
Top
8 cnrest2r 21091 . . . . . . . . 9  |-  ( J  e.  Top  ->  (
II  Cn  ( Jt  (
0 [,] 1 ) ) )  C_  (
II  Cn  J )
)
97, 8ax-mp 5 . . . . . . . 8  |-  ( II 
Cn  ( Jt  ( 0 [,] 1 ) ) )  C_  ( II  Cn  J )
106, 9eqsstri 3635 . . . . . . 7  |-  ( II 
Cn  II )  C_  ( II  Cn  J
)
113cnmptid 21464 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  x )  e.  ( II 
Cn  II ) )
1210, 11sseldi 3601 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  x )  e.  ( II 
Cn  J ) )
134cnfldtopon 22586 . . . . . . . 8  |-  J  e.  (TopOn `  CC )
1413a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  J  e.  (TopOn `  CC )
)
15 simp2 1062 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  RR )
1615recnd 10068 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  B  e.  CC )
173, 14, 16cnmptc 21465 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  B )  e.  ( II 
Cn  J ) )
184mulcn 22670 . . . . . . 7  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
1918a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  x.  e.  ( ( J  tX  J )  Cn  J
) )
203, 12, 17, 19cnmpt12f 21469 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( x  x.  B ) )  e.  ( II 
Cn  J ) )
21 1cnd 10056 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  1  e.  CC )
223, 14, 21cnmptc 21465 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  1 )  e.  ( II 
Cn  J ) )
234subcn 22669 . . . . . . . 8  |-  -  e.  ( ( J  tX  J )  Cn  J
)
2423a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  -  e.  ( ( J  tX  J )  Cn  J
) )
253, 22, 12, 24cnmpt12f 21469 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( 1  -  x ) )  e.  ( II 
Cn  J ) )
26 simp1 1061 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  RR )
2726recnd 10068 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  A  e.  CC )
283, 14, 27cnmptc 21465 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  A )  e.  ( II 
Cn  J ) )
293, 25, 28, 19cnmpt12f 21469 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( ( 1  -  x
)  x.  A ) )  e.  ( II 
Cn  J ) )
304addcn 22668 . . . . . 6  |-  +  e.  ( ( J  tX  J )  Cn  J
)
3130a1i 11 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  +  e.  ( ( J  tX  J )  Cn  J
) )
323, 20, 29, 31cnmpt12f 21469 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B
)  +  ( ( 1  -  x )  x.  A ) ) )  e.  ( II 
Cn  J ) )
331, 32syl5eqel 2705 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  F  e.  ( II  Cn  J
) )
341iccf1o 12316 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
)  /\  `' F  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) ) )
3534simpld 475 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
) )
36 f1of 6137 . . . . 5  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
)  ->  F :
( 0 [,] 1
) --> ( A [,] B ) )
37 frn 6053 . . . . 5  |-  ( F : ( 0 [,] 1 ) --> ( A [,] B )  ->  ran  F  C_  ( A [,] B ) )
3835, 36, 373syl 18 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ran  F 
C_  ( A [,] B ) )
39 iccssre 12255 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
40393adant3 1081 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A [,] B )  C_  RR )
41 ax-resscn 9993 . . . . 5  |-  RR  C_  CC
4240, 41syl6ss 3615 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A [,] B )  C_  CC )
43 cnrest2 21090 . . . 4  |-  ( ( J  e.  (TopOn `  CC )  /\  ran  F  C_  ( A [,] B
)  /\  ( A [,] B )  C_  CC )  ->  ( F  e.  ( II  Cn  J
)  <->  F  e.  (
II  Cn  ( Jt  ( A [,] B ) ) ) ) )
4414, 38, 42, 43syl3anc 1326 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( F  e.  ( II  Cn  J )  <->  F  e.  ( II  Cn  ( Jt  ( A [,] B ) ) ) ) )
4533, 44mpbid 222 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  F  e.  ( II  Cn  ( Jt  ( A [,] B ) ) ) )
4634simprd 479 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  `' F  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) )
47 resttopon 20965 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  ( A [,] B )  C_  CC )  ->  ( Jt  ( A [,] B ) )  e.  (TopOn `  ( A [,] B ) ) )
4813, 42, 47sylancr 695 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( Jt  ( A [,] B ) )  e.  (TopOn `  ( A [,] B ) ) )
49 cnrest2r 21091 . . . . . . . . 9  |-  ( J  e.  Top  ->  (
( Jt  ( A [,] B ) )  Cn  ( Jt  ( A [,] B ) ) ) 
C_  ( ( Jt  ( A [,] B ) )  Cn  J ) )
507, 49ax-mp 5 . . . . . . . 8  |-  ( ( Jt  ( A [,] B
) )  Cn  ( Jt  ( A [,] B ) ) )  C_  (
( Jt  ( A [,] B ) )  Cn  J )
5148cnmptid 21464 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  |->  y )  e.  ( ( Jt  ( A [,] B
) )  Cn  ( Jt  ( A [,] B ) ) ) )
5250, 51sseldi 3601 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  |->  y )  e.  ( ( Jt  ( A [,] B
) )  Cn  J
) )
5348, 14, 27cnmptc 21465 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  |->  A )  e.  ( ( Jt  ( A [,] B
) )  Cn  J
) )
5448, 52, 53, 24cnmpt12f 21469 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  |->  ( y  -  A ) )  e.  ( ( Jt  ( A [,] B
) )  Cn  J
) )
55 difrp 11868 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( B  -  A )  e.  RR+ ) )
5655biimp3a 1432 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  RR+ )
5756rpcnd 11874 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  e.  CC )
5856rpne0d 11877 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( B  -  A )  =/=  0 )
594divccn 22676 . . . . . . 7  |-  ( ( ( B  -  A
)  e.  CC  /\  ( B  -  A
)  =/=  0 )  ->  ( x  e.  CC  |->  ( x  / 
( B  -  A
) ) )  e.  ( J  Cn  J
) )
6057, 58, 59syl2anc 693 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  CC  |->  ( x  /  ( B  -  A ) ) )  e.  ( J  Cn  J ) )
61 oveq1 6657 . . . . . 6  |-  ( x  =  ( y  -  A )  ->  (
x  /  ( B  -  A ) )  =  ( ( y  -  A )  / 
( B  -  A
) ) )
6248, 54, 14, 60, 61cnmpt11 21466 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
y  e.  ( A [,] B )  |->  ( ( y  -  A
)  /  ( B  -  A ) ) )  e.  ( ( Jt  ( A [,] B
) )  Cn  J
) )
6346, 62eqeltrd 2701 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  J ) )
64 dfdm4 5316 . . . . . . 7  |-  dom  F  =  ran  `' F
6564eqimss2i 3660 . . . . . 6  |-  ran  `' F  C_  dom  F
66 f1odm 6141 . . . . . . 7  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B
)  ->  dom  F  =  ( 0 [,] 1
) )
6735, 66syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  dom  F  =  ( 0 [,] 1 ) )
6865, 67syl5sseq 3653 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ran  `' F  C_  ( 0 [,] 1 ) )
69 unitssre 12319 . . . . . . 7  |-  ( 0 [,] 1 )  C_  RR
7069a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
0 [,] 1 ) 
C_  RR )
7170, 41syl6ss 3615 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
0 [,] 1 ) 
C_  CC )
72 cnrest2 21090 . . . . 5  |-  ( ( J  e.  (TopOn `  CC )  /\  ran  `' F  C_  ( 0 [,] 1 )  /\  (
0 [,] 1 ) 
C_  CC )  -> 
( `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  J )  <->  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  ( Jt  ( 0 [,] 1 ) ) ) ) )
7314, 68, 71, 72syl3anc 1326 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( `' F  e.  (
( Jt  ( A [,] B ) )  Cn  J )  <->  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  ( Jt  ( 0 [,] 1 ) ) ) ) )
7463, 73mpbid 222 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  ( Jt  ( 0 [,] 1 ) ) ) )
755oveq2i 6661 . . 3  |-  ( ( Jt  ( A [,] B
) )  Cn  II )  =  ( ( Jt  ( A [,] B ) )  Cn  ( Jt  ( 0 [,] 1 ) ) )
7674, 75syl6eleqr 2712 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  II ) )
77 ishmeo 21562 . 2  |-  ( F  e.  ( II Homeo ( Jt  ( A [,] B
) ) )  <->  ( F  e.  ( II  Cn  ( Jt  ( A [,] B ) ) )  /\  `' F  e.  ( ( Jt  ( A [,] B ) )  Cn  II ) ) )
7845, 76, 77sylanbrc 698 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  F  e.  ( II Homeo ( Jt  ( A [,] B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   RR+crp 11832   [,]cicc 12178   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   Homeochmeo 21556   IIcii 22678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680
This theorem is referenced by:  xrhmph  22746
  Copyright terms: Public domain W3C validator